summaryrefslogtreecommitdiff
path: root/test/CodeGen/NVPTX
diff options
context:
space:
mode:
authorJustin Lebar <jlebar@google.com>2017-01-31 23:08:57 +0000
committerJustin Lebar <jlebar@google.com>2017-01-31 23:08:57 +0000
commit6f09ea3f571cd2f4c39fff52deecec7cfc62d0c4 (patch)
tree235c9d4ca67913b3a77c113a4bdfd30648a3e8bf /test/CodeGen/NVPTX
parentd99a5ea737c696917819bd764e5ecb960e15d0eb (diff)
[NVPTX] Compute approx sqrt as 1/rsqrt(x) rather than x*rsqrt(x).
x*rsqrt(x) returns NaN for x == 0, whereas 1/rsqrt(x) returns 0, as desired. Verified that the particular nvptx approximate instructions here do in fact return 0 for x = 0. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293713 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'test/CodeGen/NVPTX')
-rw-r--r--test/CodeGen/NVPTX/fast-math.ll4
-rw-r--r--test/CodeGen/NVPTX/sqrt-approx.ll8
2 files changed, 7 insertions, 5 deletions
diff --git a/test/CodeGen/NVPTX/fast-math.ll b/test/CodeGen/NVPTX/fast-math.ll
index 528d2c02df5..f925d67434c 100644
--- a/test/CodeGen/NVPTX/fast-math.ll
+++ b/test/CodeGen/NVPTX/fast-math.ll
@@ -40,11 +40,11 @@ define float @sqrt_div_fast_ftz(float %a, float %b) #0 #1 {
}
; There are no fast-math or ftz versions of sqrt and div for f64. We use
-; x * rsqrt(x) for sqrt(x), and emit a vanilla divide.
+; reciprocal(rsqrt(x)) for sqrt(x), and emit a vanilla divide.
; CHECK-LABEL: sqrt_div_fast_ftz_f64(
; CHECK: rsqrt.approx.f64
-; CHECK: mul.f64
+; CHECK: rcp.approx.ftz.f64
; CHECK: div.rn.f64
define double @sqrt_div_fast_ftz_f64(double %a, double %b) #0 #1 {
%t1 = tail call double @llvm.sqrt.f64(double %a)
diff --git a/test/CodeGen/NVPTX/sqrt-approx.ll b/test/CodeGen/NVPTX/sqrt-approx.ll
index 5edf9e28a93..1e28db44b80 100644
--- a/test/CodeGen/NVPTX/sqrt-approx.ll
+++ b/test/CodeGen/NVPTX/sqrt-approx.ll
@@ -59,9 +59,11 @@ define float @test_sqrt_ftz(float %a) #0 #1 {
; CHECK-LABEL test_sqrt64
define double @test_sqrt64(double %a) #0 {
-; There's no sqrt.approx.f64 instruction; we emit x * rsqrt.approx.f64(x).
+; There's no sqrt.approx.f64 instruction; we emit
+; reciprocal(rsqrt.approx.f64(x)). There's no non-ftz approximate reciprocal,
+; so we just use the ftz version.
; CHECK: rsqrt.approx.f64
-; CHECK: mul.f64
+; CHECK: rcp.approx.ftz.f64
%ret = tail call double @llvm.sqrt.f64(double %a)
ret double %ret
}
@@ -70,7 +72,7 @@ define double @test_sqrt64(double %a) #0 {
define double @test_sqrt64_ftz(double %a) #0 #1 {
; There's no sqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
; CHECK: rsqrt.approx.f64
-; CHECK: mul.f64
+; CHECK: rcp.approx.ftz.f64
%ret = tail call double @llvm.sqrt.f64(double %a)
ret double %ret
}