summaryrefslogtreecommitdiff
path: root/lib/ProfileData/SampleProfReader.cpp
diff options
context:
space:
mode:
authorDiego Novillo <dnovillo@google.com>2014-09-09 12:40:50 +0000
committerDiego Novillo <dnovillo@google.com>2014-09-09 12:40:50 +0000
commit40c949a1b419c167ab0bffd6b8b24d0a02460ba3 (patch)
tree53ba085e60baf64d5eed0db78f7b3c1b058d3251 /lib/ProfileData/SampleProfReader.cpp
parent052538124fc45e6d90e8678b130e819472612151 (diff)
Re-factor sample profile reader into lib/ProfileData.
Summary: This patch moves the profile reading logic out of the Sample Profile transformation into a generic profile reader facility in lib/ProfileData. The intent is to use this new reader to implement a sample profile reader/writer that can be used to convert sample profiles from external sources into LLVM. This first patch introduces no functional changes. It moves the profile reading code from lib/Transforms/SampleProfile.cpp into lib/ProfileData/SampleProfReader.cpp. In subsequent patches I will: - Add a bitcode format for sample profiles to allow for more efficient encoding of the profile. - Add a writer for both text and bitcode format profiles. - Add a 'convert' command to llvm-profdata to be able to convert between the two (and serve as entry point for other sample profile formats). Reviewers: bogner, echristo Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D5250 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217437 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/ProfileData/SampleProfReader.cpp')
-rw-r--r--lib/ProfileData/SampleProfReader.cpp238
1 files changed, 238 insertions, 0 deletions
diff --git a/lib/ProfileData/SampleProfReader.cpp b/lib/ProfileData/SampleProfReader.cpp
new file mode 100644
index 00000000000..a81c760479e
--- /dev/null
+++ b/lib/ProfileData/SampleProfReader.cpp
@@ -0,0 +1,238 @@
+//===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the class that reads LLVM sample profiles. It
+// supports two file formats: text and bitcode. The textual representation
+// is useful for debugging and testing purposes. The bitcode representation
+// is more compact, resulting in smaller file sizes. However, they can
+// both be used interchangeably.
+//
+// NOTE: If you are making changes to the file format, please remember
+// to document them in the Clang documentation at
+// tools/clang/docs/UsersManual.rst.
+//
+// Text format
+// -----------
+//
+// Sample profiles are written as ASCII text. The file is divided into
+// sections, which correspond to each of the functions executed at runtime.
+// Each section has the following format
+//
+// function1:total_samples:total_head_samples
+// offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
+// offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
+// ...
+// offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
+//
+// The file may contain blank lines between sections and within a
+// section. However, the spacing within a single line is fixed. Additional
+// spaces will result in an error while reading the file.
+//
+// Function names must be mangled in order for the profile loader to
+// match them in the current translation unit. The two numbers in the
+// function header specify how many total samples were accumulated in the
+// function (first number), and the total number of samples accumulated
+// in the prologue of the function (second number). This head sample
+// count provides an indicator of how frequently the function is invoked.
+//
+// Each sampled line may contain several items. Some are optional (marked
+// below):
+//
+// a. Source line offset. This number represents the line number
+// in the function where the sample was collected. The line number is
+// always relative to the line where symbol of the function is
+// defined. So, if the function has its header at line 280, the offset
+// 13 is at line 293 in the file.
+//
+// Note that this offset should never be a negative number. This could
+// happen in cases like macros. The debug machinery will register the
+// line number at the point of macro expansion. So, if the macro was
+// expanded in a line before the start of the function, the profile
+// converter should emit a 0 as the offset (this means that the optimizers
+// will not be able to associate a meaningful weight to the instructions
+// in the macro).
+//
+// b. [OPTIONAL] Discriminator. This is used if the sampled program
+// was compiled with DWARF discriminator support
+// (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators).
+// DWARF discriminators are unsigned integer values that allow the
+// compiler to distinguish between multiple execution paths on the
+// same source line location.
+//
+// For example, consider the line of code ``if (cond) foo(); else bar();``.
+// If the predicate ``cond`` is true 80% of the time, then the edge
+// into function ``foo`` should be considered to be taken most of the
+// time. But both calls to ``foo`` and ``bar`` are at the same source
+// line, so a sample count at that line is not sufficient. The
+// compiler needs to know which part of that line is taken more
+// frequently.
+//
+// This is what discriminators provide. In this case, the calls to
+// ``foo`` and ``bar`` will be at the same line, but will have
+// different discriminator values. This allows the compiler to correctly
+// set edge weights into ``foo`` and ``bar``.
+//
+// c. Number of samples. This is an integer quantity representing the
+// number of samples collected by the profiler at this source
+// location.
+//
+// d. [OPTIONAL] Potential call targets and samples. If present, this
+// line contains a call instruction. This models both direct and
+// number of samples. For example,
+//
+// 130: 7 foo:3 bar:2 baz:7
+//
+// The above means that at relative line offset 130 there is a call
+// instruction that calls one of ``foo()``, ``bar()`` and ``baz()``,
+// with ``baz()`` being the relatively more frequently called target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/SampleProfReader.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorOr.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/LineIterator.h"
+#include "llvm/Support/Regex.h"
+
+using namespace sampleprof;
+using namespace llvm;
+
+/// \brief Print the samples collected for a function on stream \p OS.
+///
+/// \param OS Stream to emit the output to.
+void FunctionSamples::print(raw_ostream &OS) {
+ OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
+ << " sampled lines\n";
+ for (BodySampleMap::const_iterator SI = BodySamples.begin(),
+ SE = BodySamples.end();
+ SI != SE; ++SI)
+ OS << "\tline offset: " << SI->first.LineOffset
+ << ", discriminator: " << SI->first.Discriminator
+ << ", number of samples: " << SI->second << "\n";
+ OS << "\n";
+}
+
+/// \brief Print the function profile for \p FName on stream \p OS.
+///
+/// \param OS Stream to emit the output to.
+/// \param FName Name of the function to print.
+void SampleProfileReader::printFunctionProfile(raw_ostream &OS,
+ StringRef FName) {
+ OS << "Function: " << FName << ":\n";
+ Profiles[FName].print(OS);
+}
+
+/// \brief Dump the function profile for \p FName.
+///
+/// \param FName Name of the function to print.
+void SampleProfileReader::dumpFunctionProfile(StringRef FName) {
+ printFunctionProfile(dbgs(), FName);
+}
+
+/// \brief Dump all the function profiles found.
+void SampleProfileReader::dump() {
+ for (StringMap<FunctionSamples>::const_iterator I = Profiles.begin(),
+ E = Profiles.end();
+ I != E; ++I)
+ dumpFunctionProfile(I->getKey());
+}
+
+/// \brief Load samples from a text file.
+///
+/// See the documentation at the top of the file for an explanation of
+/// the expected format.
+///
+/// \returns true if the file was loaded successfully, false otherwise.
+bool SampleProfileReader::loadText() {
+ ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
+ MemoryBuffer::getFile(Filename);
+ if (std::error_code EC = BufferOrErr.getError()) {
+ std::string Msg(EC.message());
+ M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
+ return false;
+ }
+ MemoryBuffer &Buffer = *BufferOrErr.get();
+ line_iterator LineIt(Buffer, '#');
+
+ // Read the profile of each function. Since each function may be
+ // mentioned more than once, and we are collecting flat profiles,
+ // accumulate samples as we parse them.
+ Regex HeadRE("^([^0-9].*):([0-9]+):([0-9]+)$");
+ Regex LineSample("^([0-9]+)\\.?([0-9]+)?: ([0-9]+)(.*)$");
+ while (!LineIt.is_at_eof()) {
+ // Read the header of each function.
+ //
+ // Note that for function identifiers we are actually expecting
+ // mangled names, but we may not always get them. This happens when
+ // the compiler decides not to emit the function (e.g., it was inlined
+ // and removed). In this case, the binary will not have the linkage
+ // name for the function, so the profiler will emit the function's
+ // unmangled name, which may contain characters like ':' and '>' in its
+ // name (member functions, templates, etc).
+ //
+ // The only requirement we place on the identifier, then, is that it
+ // should not begin with a number.
+ SmallVector<StringRef, 3> Matches;
+ if (!HeadRE.match(*LineIt, &Matches)) {
+ reportParseError(LineIt.line_number(),
+ "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
+ return false;
+ }
+ assert(Matches.size() == 4);
+ StringRef FName = Matches[1];
+ unsigned NumSamples, NumHeadSamples;
+ Matches[2].getAsInteger(10, NumSamples);
+ Matches[3].getAsInteger(10, NumHeadSamples);
+ Profiles[FName] = FunctionSamples();
+ FunctionSamples &FProfile = Profiles[FName];
+ FProfile.addTotalSamples(NumSamples);
+ FProfile.addHeadSamples(NumHeadSamples);
+ ++LineIt;
+
+ // Now read the body. The body of the function ends when we reach
+ // EOF or when we see the start of the next function.
+ while (!LineIt.is_at_eof() && isdigit((*LineIt)[0])) {
+ if (!LineSample.match(*LineIt, &Matches)) {
+ reportParseError(
+ LineIt.line_number(),
+ "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt);
+ return false;
+ }
+ assert(Matches.size() == 5);
+ unsigned LineOffset, NumSamples, Discriminator = 0;
+ Matches[1].getAsInteger(10, LineOffset);
+ if (Matches[2] != "")
+ Matches[2].getAsInteger(10, Discriminator);
+ Matches[3].getAsInteger(10, NumSamples);
+
+ // FIXME: Handle called targets (in Matches[4]).
+
+ // When dealing with instruction weights, we use the value
+ // zero to indicate the absence of a sample. If we read an
+ // actual zero from the profile file, return it as 1 to
+ // avoid the confusion later on.
+ if (NumSamples == 0)
+ NumSamples = 1;
+ FProfile.addBodySamples(LineOffset, Discriminator, NumSamples);
+ ++LineIt;
+ }
+ }
+
+ return true;
+}
+
+/// \brief Load execution samples from a file.
+///
+/// This function examines the header of the given file to determine
+/// whether to use the text or the bitcode loader.
+bool SampleProfileReader::load() {
+ // TODO Actually detect the file format.
+ return loadText();
+}