summaryrefslogtreecommitdiff
path: root/lib/Analysis/TargetTransformInfo.cpp
diff options
context:
space:
mode:
authorGuozhi Wei <carrot@google.com>2017-09-08 22:29:17 +0000
committerGuozhi Wei <carrot@google.com>2017-09-08 22:29:17 +0000
commit19969b8b8fb27f1bbb7f9b60c2e915aca4de2ebe (patch)
tree916bf9150ee8bef0aa5717416af82670f7feb2d7 /lib/Analysis/TargetTransformInfo.cpp
parent9efaebecaa8156d6c8a3afba9b1d514f20190d62 (diff)
[TargetTransformInfo] Add a new public interface getInstructionCost
Current TargetTransformInfo can support throughput cost model and code size model, but sometimes we also need instruction latency cost model in different optimizations. Hal suggested we need a single public interface to query the different cost of an instruction. So I proposed following interface: enum TargetCostKind { TCK_RecipThroughput, ///< Reciprocal throughput. TCK_Latency, ///< The latency of instruction. TCK_CodeSize ///< Instruction code size. }; int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const; All clients should mainly use this function to query the cost of an instruction, parameter <kind> specifies the desired cost model. This patch also provides a simple default implementation of getInstructionLatency. The default getInstructionLatency provides latency numbers for only small number of instruction classes, those latency numbers are only reasonable for modern OOO processors. It can be extended in following ways: Add more detail into this function. Add getXXXLatency function and call it from here. Implement target specific getInstructionLatency function. Differential Revision: https://reviews.llvm.org/D37170 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312832 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/TargetTransformInfo.cpp')
-rw-r--r--lib/Analysis/TargetTransformInfo.cpp557
1 files changed, 557 insertions, 0 deletions
diff --git a/lib/Analysis/TargetTransformInfo.cpp b/lib/Analysis/TargetTransformInfo.cpp
index 8673b1b55d9..0884eea329a 100644
--- a/lib/Analysis/TargetTransformInfo.cpp
+++ b/lib/Analysis/TargetTransformInfo.cpp
@@ -16,11 +16,13 @@
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <utility>
using namespace llvm;
+using namespace PatternMatch;
#define DEBUG_TYPE "tti"
@@ -29,6 +31,10 @@ static cl::opt<bool> UseWideMemcpyLoopLowering(
cl::desc("Enables the new wide memcpy loop lowering in Transforms/Utils."),
cl::Hidden);
+static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
+ cl::Hidden,
+ cl::desc("Recognize reduction patterns."));
+
namespace {
/// \brief No-op implementation of the TTI interface using the utility base
/// classes.
@@ -583,6 +589,557 @@ bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
return TTIImpl->shouldExpandReduction(II);
}
+int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
+ return TTIImpl->getInstructionLatency(I);
+}
+
+static bool isReverseVectorMask(ArrayRef<int> Mask) {
+ for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
+ if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i))
+ return false;
+ return true;
+}
+
+static bool isSingleSourceVectorMask(ArrayRef<int> Mask) {
+ bool Vec0 = false;
+ bool Vec1 = false;
+ for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) {
+ if (Mask[i] >= 0) {
+ if ((unsigned)Mask[i] >= NumVecElts)
+ Vec1 = true;
+ else
+ Vec0 = true;
+ }
+ }
+ return !(Vec0 && Vec1);
+}
+
+static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) {
+ for (unsigned i = 0; i < Mask.size(); ++i)
+ if (Mask[i] > 0)
+ return false;
+ return true;
+}
+
+static bool isAlternateVectorMask(ArrayRef<int> Mask) {
+ bool isAlternate = true;
+ unsigned MaskSize = Mask.size();
+
+ // Example: shufflevector A, B, <0,5,2,7>
+ for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
+ if (Mask[i] < 0)
+ continue;
+ isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i);
+ }
+
+ if (isAlternate)
+ return true;
+
+ isAlternate = true;
+ // Example: shufflevector A, B, <4,1,6,3>
+ for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
+ if (Mask[i] < 0)
+ continue;
+ isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i);
+ }
+
+ return isAlternate;
+}
+
+static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
+ TargetTransformInfo::OperandValueKind OpInfo =
+ TargetTransformInfo::OK_AnyValue;
+
+ // Check for a splat of a constant or for a non uniform vector of constants.
+ if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
+ OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
+ if (cast<Constant>(V)->getSplatValue() != nullptr)
+ OpInfo = TargetTransformInfo::OK_UniformConstantValue;
+ }
+
+ // Check for a splat of a uniform value. This is not loop aware, so return
+ // true only for the obviously uniform cases (argument, globalvalue)
+ const Value *Splat = getSplatValue(V);
+ if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
+ OpInfo = TargetTransformInfo::OK_UniformValue;
+
+ return OpInfo;
+}
+
+static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
+ unsigned Level) {
+ // We don't need a shuffle if we just want to have element 0 in position 0 of
+ // the vector.
+ if (!SI && Level == 0 && IsLeft)
+ return true;
+ else if (!SI)
+ return false;
+
+ SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
+
+ // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
+ // we look at the left or right side.
+ for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
+ Mask[i] = val;
+
+ SmallVector<int, 16> ActualMask = SI->getShuffleMask();
+ return Mask == ActualMask;
+}
+
+namespace {
+/// Kind of the reduction data.
+enum ReductionKind {
+ RK_None, /// Not a reduction.
+ RK_Arithmetic, /// Binary reduction data.
+ RK_MinMax, /// Min/max reduction data.
+ RK_UnsignedMinMax, /// Unsigned min/max reduction data.
+};
+/// Contains opcode + LHS/RHS parts of the reduction operations.
+struct ReductionData {
+ ReductionData() = delete;
+ ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
+ : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
+ assert(Kind != RK_None && "expected binary or min/max reduction only.");
+ }
+ unsigned Opcode = 0;
+ Value *LHS = nullptr;
+ Value *RHS = nullptr;
+ ReductionKind Kind = RK_None;
+ bool hasSameData(ReductionData &RD) const {
+ return Kind == RD.Kind && Opcode == RD.Opcode;
+ }
+};
+} // namespace
+
+static Optional<ReductionData> getReductionData(Instruction *I) {
+ Value *L, *R;
+ if (m_BinOp(m_Value(L), m_Value(R)).match(I))
+ return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
+ if (auto *SI = dyn_cast<SelectInst>(I)) {
+ if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
+ m_SMax(m_Value(L), m_Value(R)).match(SI) ||
+ m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
+ m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
+ m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
+ m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
+ auto *CI = cast<CmpInst>(SI->getCondition());
+ return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
+ }
+ if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
+ m_UMax(m_Value(L), m_Value(R)).match(SI)) {
+ auto *CI = cast<CmpInst>(SI->getCondition());
+ return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
+ }
+ }
+ return llvm::None;
+}
+
+static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
+ unsigned Level,
+ unsigned NumLevels) {
+ // Match one level of pairwise operations.
+ // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
+ // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
+ // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
+ // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
+ // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
+ if (!I)
+ return RK_None;
+
+ assert(I->getType()->isVectorTy() && "Expecting a vector type");
+
+ Optional<ReductionData> RD = getReductionData(I);
+ if (!RD)
+ return RK_None;
+
+ ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
+ if (!LS && Level)
+ return RK_None;
+ ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
+ if (!RS && Level)
+ return RK_None;
+
+ // On level 0 we can omit one shufflevector instruction.
+ if (!Level && !RS && !LS)
+ return RK_None;
+
+ // Shuffle inputs must match.
+ Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
+ Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
+ Value *NextLevelOp = nullptr;
+ if (NextLevelOpR && NextLevelOpL) {
+ // If we have two shuffles their operands must match.
+ if (NextLevelOpL != NextLevelOpR)
+ return RK_None;
+
+ NextLevelOp = NextLevelOpL;
+ } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
+ // On the first level we can omit the shufflevector <0, undef,...>. So the
+ // input to the other shufflevector <1, undef> must match with one of the
+ // inputs to the current binary operation.
+ // Example:
+ // %NextLevelOpL = shufflevector %R, <1, undef ...>
+ // %BinOp = fadd %NextLevelOpL, %R
+ if (NextLevelOpL && NextLevelOpL != RD->RHS)
+ return RK_None;
+ else if (NextLevelOpR && NextLevelOpR != RD->LHS)
+ return RK_None;
+
+ NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
+ } else
+ return RK_None;
+
+ // Check that the next levels binary operation exists and matches with the
+ // current one.
+ if (Level + 1 != NumLevels) {
+ Optional<ReductionData> NextLevelRD =
+ getReductionData(cast<Instruction>(NextLevelOp));
+ if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
+ return RK_None;
+ }
+
+ // Shuffle mask for pairwise operation must match.
+ if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
+ if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
+ return RK_None;
+ } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
+ if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
+ return RK_None;
+ } else {
+ return RK_None;
+ }
+
+ if (++Level == NumLevels)
+ return RD->Kind;
+
+ // Match next level.
+ return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
+ NumLevels);
+}
+
+static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
+ unsigned &Opcode, Type *&Ty) {
+ if (!EnableReduxCost)
+ return RK_None;
+
+ // Need to extract the first element.
+ ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
+ unsigned Idx = ~0u;
+ if (CI)
+ Idx = CI->getZExtValue();
+ if (Idx != 0)
+ return RK_None;
+
+ auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
+ if (!RdxStart)
+ return RK_None;
+ Optional<ReductionData> RD = getReductionData(RdxStart);
+ if (!RD)
+ return RK_None;
+
+ Type *VecTy = RdxStart->getType();
+ unsigned NumVecElems = VecTy->getVectorNumElements();
+ if (!isPowerOf2_32(NumVecElems))
+ return RK_None;
+
+ // We look for a sequence of shuffle,shuffle,add triples like the following
+ // that builds a pairwise reduction tree.
+ //
+ // (X0, X1, X2, X3)
+ // (X0 + X1, X2 + X3, undef, undef)
+ // ((X0 + X1) + (X2 + X3), undef, undef, undef)
+ //
+ // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
+ // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
+ // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
+ // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
+ // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
+ // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
+ // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
+ // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
+ // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
+ // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
+ // %r = extractelement <4 x float> %bin.rdx8, i32 0
+ if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
+ RK_None)
+ return RK_None;
+
+ Opcode = RD->Opcode;
+ Ty = VecTy;
+
+ return RD->Kind;
+}
+
+static std::pair<Value *, ShuffleVectorInst *>
+getShuffleAndOtherOprd(Value *L, Value *R) {
+ ShuffleVectorInst *S = nullptr;
+
+ if ((S = dyn_cast<ShuffleVectorInst>(L)))
+ return std::make_pair(R, S);
+
+ S = dyn_cast<ShuffleVectorInst>(R);
+ return std::make_pair(L, S);
+}
+
+static ReductionKind
+matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
+ unsigned &Opcode, Type *&Ty) {
+ if (!EnableReduxCost)
+ return RK_None;
+
+ // Need to extract the first element.
+ ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
+ unsigned Idx = ~0u;
+ if (CI)
+ Idx = CI->getZExtValue();
+ if (Idx != 0)
+ return RK_None;
+
+ auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
+ if (!RdxStart)
+ return RK_None;
+ Optional<ReductionData> RD = getReductionData(RdxStart);
+ if (!RD)
+ return RK_None;
+
+ Type *VecTy = ReduxRoot->getOperand(0)->getType();
+ unsigned NumVecElems = VecTy->getVectorNumElements();
+ if (!isPowerOf2_32(NumVecElems))
+ return RK_None;
+
+ // We look for a sequence of shuffles and adds like the following matching one
+ // fadd, shuffle vector pair at a time.
+ //
+ // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
+ // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
+ // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
+ // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
+ // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
+ // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
+ // %r = extractelement <4 x float> %bin.rdx8, i32 0
+
+ unsigned MaskStart = 1;
+ Instruction *RdxOp = RdxStart;
+ SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
+ unsigned NumVecElemsRemain = NumVecElems;
+ while (NumVecElemsRemain - 1) {
+ // Check for the right reduction operation.
+ if (!RdxOp)
+ return RK_None;
+ Optional<ReductionData> RDLevel = getReductionData(RdxOp);
+ if (!RDLevel || !RDLevel->hasSameData(*RD))
+ return RK_None;
+
+ Value *NextRdxOp;
+ ShuffleVectorInst *Shuffle;
+ std::tie(NextRdxOp, Shuffle) =
+ getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
+
+ // Check the current reduction operation and the shuffle use the same value.
+ if (Shuffle == nullptr)
+ return RK_None;
+ if (Shuffle->getOperand(0) != NextRdxOp)
+ return RK_None;
+
+ // Check that shuffle masks matches.
+ for (unsigned j = 0; j != MaskStart; ++j)
+ ShuffleMask[j] = MaskStart + j;
+ // Fill the rest of the mask with -1 for undef.
+ std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
+
+ SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
+ if (ShuffleMask != Mask)
+ return RK_None;
+
+ RdxOp = dyn_cast<Instruction>(NextRdxOp);
+ NumVecElemsRemain /= 2;
+ MaskStart *= 2;
+ }
+
+ Opcode = RD->Opcode;
+ Ty = VecTy;
+ return RD->Kind;
+}
+
+int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
+ switch (I->getOpcode()) {
+ case Instruction::GetElementPtr:
+ return getUserCost(I);
+
+ case Instruction::Ret:
+ case Instruction::PHI:
+ case Instruction::Br: {
+ return getCFInstrCost(I->getOpcode());
+ }
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ TargetTransformInfo::OperandValueKind Op1VK =
+ getOperandInfo(I->getOperand(0));
+ TargetTransformInfo::OperandValueKind Op2VK =
+ getOperandInfo(I->getOperand(1));
+ SmallVector<const Value*, 2> Operands(I->operand_values());
+ return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
+ Op2VK, TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None,
+ Operands);
+ }
+ case Instruction::Select: {
+ const SelectInst *SI = cast<SelectInst>(I);
+ Type *CondTy = SI->getCondition()->getType();
+ return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
+ }
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ Type *ValTy = I->getOperand(0)->getType();
+ return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
+ }
+ case Instruction::Store: {
+ const StoreInst *SI = cast<StoreInst>(I);
+ Type *ValTy = SI->getValueOperand()->getType();
+ return getMemoryOpCost(I->getOpcode(), ValTy,
+ SI->getAlignment(),
+ SI->getPointerAddressSpace(), I);
+ }
+ case Instruction::Load: {
+ const LoadInst *LI = cast<LoadInst>(I);
+ return getMemoryOpCost(I->getOpcode(), I->getType(),
+ LI->getAlignment(),
+ LI->getPointerAddressSpace(), I);
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast: {
+ Type *SrcTy = I->getOperand(0)->getType();
+ return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
+ }
+ case Instruction::ExtractElement: {
+ const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
+ ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
+ unsigned Idx = -1;
+ if (CI)
+ Idx = CI->getZExtValue();
+
+ // Try to match a reduction sequence (series of shufflevector and vector
+ // adds followed by a extractelement).
+ unsigned ReduxOpCode;
+ Type *ReduxType;
+
+ switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
+ case RK_Arithmetic:
+ return getArithmeticReductionCost(ReduxOpCode, ReduxType,
+ /*IsPairwiseForm=*/false);
+ case RK_MinMax:
+ return getMinMaxReductionCost(
+ ReduxType, CmpInst::makeCmpResultType(ReduxType),
+ /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
+ case RK_UnsignedMinMax:
+ return getMinMaxReductionCost(
+ ReduxType, CmpInst::makeCmpResultType(ReduxType),
+ /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
+ case RK_None:
+ break;
+ }
+
+ switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
+ case RK_Arithmetic:
+ return getArithmeticReductionCost(ReduxOpCode, ReduxType,
+ /*IsPairwiseForm=*/true);
+ case RK_MinMax:
+ return getMinMaxReductionCost(
+ ReduxType, CmpInst::makeCmpResultType(ReduxType),
+ /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
+ case RK_UnsignedMinMax:
+ return getMinMaxReductionCost(
+ ReduxType, CmpInst::makeCmpResultType(ReduxType),
+ /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
+ case RK_None:
+ break;
+ }
+
+ return getVectorInstrCost(I->getOpcode(),
+ EEI->getOperand(0)->getType(), Idx);
+ }
+ case Instruction::InsertElement: {
+ const InsertElementInst * IE = cast<InsertElementInst>(I);
+ ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
+ unsigned Idx = -1;
+ if (CI)
+ Idx = CI->getZExtValue();
+ return getVectorInstrCost(I->getOpcode(),
+ IE->getType(), Idx);
+ }
+ case Instruction::ShuffleVector: {
+ const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
+ Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
+ unsigned NumVecElems = VecTypOp0->getVectorNumElements();
+ SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
+
+ if (NumVecElems == Mask.size()) {
+ if (isReverseVectorMask(Mask))
+ return getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0,
+ 0, nullptr);
+ if (isAlternateVectorMask(Mask))
+ return getShuffleCost(TargetTransformInfo::SK_Alternate,
+ VecTypOp0, 0, nullptr);
+
+ if (isZeroEltBroadcastVectorMask(Mask))
+ return getShuffleCost(TargetTransformInfo::SK_Broadcast,
+ VecTypOp0, 0, nullptr);
+
+ if (isSingleSourceVectorMask(Mask))
+ return getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
+ VecTypOp0, 0, nullptr);
+
+ return getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
+ VecTypOp0, 0, nullptr);
+ }
+
+ return -1;
+ }
+ case Instruction::Call:
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ SmallVector<Value *, 4> Args(II->arg_operands());
+
+ FastMathFlags FMF;
+ if (auto *FPMO = dyn_cast<FPMathOperator>(II))
+ FMF = FPMO->getFastMathFlags();
+
+ return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
+ Args, FMF);
+ }
+ return -1;
+ default:
+ // We don't have any information on this instruction.
+ return -1;
+ }
+}
+
TargetTransformInfo::Concept::~Concept() {}
TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}