summaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorLang Hames <lhames@gmail.com>2016-05-30 00:09:26 +0000
committerLang Hames <lhames@gmail.com>2016-05-30 00:09:26 +0000
commit203f697825c348e4c2c2bdd6efa2602564e67b70 (patch)
tree3d021b2243da0bb0d56231a088b4444003a2039c /examples
parentd703145852698e586065dc9ee5fbf5374a7d781f (diff)
[Kaleidoscope][BuildingAJIT] Add code for Chapter 5 - remote JITing.
This chapter demonstrates lazily JITing from ASTs with the expressions being executed on a remote machine via a TCP connection. It needs some polish, but is substantially complete. Currently x86-64 SysV ABI (Darwin and Linux) only, but other architectures can be supported by changing the server code to use alternative ABI support classes from llvm/include/llvm/ExecutionEngine/Orc/OrcABISupport.h. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271193 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'examples')
-rw-r--r--examples/Kaleidoscope/BuildingAJIT/CMakeLists.txt1
-rw-r--r--examples/Kaleidoscope/BuildingAJIT/Chapter5/CMakeLists.txt21
-rw-r--r--examples/Kaleidoscope/BuildingAJIT/Chapter5/KaleidoscopeJIT.h263
-rw-r--r--examples/Kaleidoscope/BuildingAJIT/Chapter5/RemoteJITUtils.h74
-rw-r--r--examples/Kaleidoscope/BuildingAJIT/Chapter5/Server/CMakeLists.txt17
-rw-r--r--examples/Kaleidoscope/BuildingAJIT/Chapter5/Server/server.cpp119
-rw-r--r--examples/Kaleidoscope/BuildingAJIT/Chapter5/toy.cpp1294
7 files changed, 1789 insertions, 0 deletions
diff --git a/examples/Kaleidoscope/BuildingAJIT/CMakeLists.txt b/examples/Kaleidoscope/BuildingAJIT/CMakeLists.txt
index 8315eb6e0e5..17e280c1671 100644
--- a/examples/Kaleidoscope/BuildingAJIT/CMakeLists.txt
+++ b/examples/Kaleidoscope/BuildingAJIT/CMakeLists.txt
@@ -2,4 +2,5 @@ add_subdirectory(Chapter1)
add_subdirectory(Chapter2)
add_subdirectory(Chapter3)
add_subdirectory(Chapter4)
+add_subdirectory(Chapter5)
diff --git a/examples/Kaleidoscope/BuildingAJIT/Chapter5/CMakeLists.txt b/examples/Kaleidoscope/BuildingAJIT/Chapter5/CMakeLists.txt
new file mode 100644
index 00000000000..d5b832b4955
--- /dev/null
+++ b/examples/Kaleidoscope/BuildingAJIT/Chapter5/CMakeLists.txt
@@ -0,0 +1,21 @@
+add_subdirectory(Server)
+
+set(LLVM_LINK_COMPONENTS
+ Analysis
+ Core
+ ExecutionEngine
+ InstCombine
+ Object
+ OrcJIT
+ RuntimeDyld
+ ScalarOpts
+ Support
+ TransformUtils
+ native
+ )
+
+add_kaleidoscope_chapter(BuildingAJIT-Ch5
+ toy.cpp
+ )
+
+export_executable_symbols(BuildingAJIT-Ch5)
diff --git a/examples/Kaleidoscope/BuildingAJIT/Chapter5/KaleidoscopeJIT.h b/examples/Kaleidoscope/BuildingAJIT/Chapter5/KaleidoscopeJIT.h
new file mode 100644
index 00000000000..d72dfdde343
--- /dev/null
+++ b/examples/Kaleidoscope/BuildingAJIT/Chapter5/KaleidoscopeJIT.h
@@ -0,0 +1,263 @@
+//===----- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Contains a simple JIT definition for use in the kaleidoscope tutorials.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
+#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
+
+#include "RemoteJITUtils.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
+#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
+#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
+#include "llvm/ExecutionEngine/Orc/JITSymbol.h"
+#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
+#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
+#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
+#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
+#include "llvm/ExecutionEngine/Orc/OrcRemoteTargetClient.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <memory>
+#include <string>
+#include <vector>
+
+class PrototypeAST;
+class ExprAST;
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+ std::unique_ptr<PrototypeAST> Proto;
+ std::unique_ptr<ExprAST> Body;
+
+public:
+ FunctionAST(std::unique_ptr<PrototypeAST> Proto,
+ std::unique_ptr<ExprAST> Body)
+ : Proto(std::move(Proto)), Body(std::move(Body)) {}
+ const PrototypeAST& getProto() const;
+ const std::string& getName() const;
+ llvm::Function *codegen();
+};
+
+/// This will compile FnAST to IR, rename the function to add the given
+/// suffix (needed to prevent a name-clash with the function's stub),
+/// and then take ownership of the module that the function was compiled
+/// into.
+std::unique_ptr<llvm::Module>
+irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);
+
+namespace llvm {
+namespace orc {
+
+// Typedef the remote-client API.
+typedef remote::OrcRemoteTargetClient<FDRPCChannel> MyRemote;
+
+class KaleidoscopeJIT {
+private:
+ MyRemote &Remote;
+ std::unique_ptr<TargetMachine> TM;
+ const DataLayout DL;
+ JITCompileCallbackManager *CompileCallbackMgr;
+ std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;
+ ObjectLinkingLayer<> ObjectLayer;
+ IRCompileLayer<decltype(ObjectLayer)> CompileLayer;
+
+ typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
+ OptimizeFunction;
+
+ IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;
+
+public:
+ typedef decltype(OptimizeLayer)::ModuleSetHandleT ModuleHandle;
+
+ KaleidoscopeJIT(MyRemote &Remote)
+ : Remote(Remote),
+ TM(EngineBuilder().selectTarget()),
+ DL(TM->createDataLayout()),
+ CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
+ OptimizeLayer(CompileLayer,
+ [this](std::unique_ptr<Module> M) {
+ return optimizeModule(std::move(M));
+ }) {
+ auto CCMgrOrErr = Remote.enableCompileCallbacks(0);
+ if (!CCMgrOrErr) {
+ logAllUnhandledErrors(CCMgrOrErr.takeError(), errs(),
+ "Error enabling remote compile callbacks:");
+ exit(1);
+ }
+ CompileCallbackMgr = &*CCMgrOrErr;
+ std::unique_ptr<MyRemote::RCIndirectStubsManager> ISM;
+ if (auto Err = Remote.createIndirectStubsManager(ISM)) {
+ logAllUnhandledErrors(std::move(Err), errs(),
+ "Error creating indirect stubs manager:");
+ exit(1);
+ }
+ IndirectStubsMgr = std::move(ISM);
+ llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
+ }
+
+ TargetMachine &getTargetMachine() { return *TM; }
+
+ ModuleHandle addModule(std::unique_ptr<Module> M) {
+
+ // Build our symbol resolver:
+ // Lambda 1: Look back into the JIT itself to find symbols that are part of
+ // the same "logical dylib".
+ // Lambda 2: Search for external symbols in the host process.
+ auto Resolver = createLambdaResolver(
+ [&](const std::string &Name) {
+ if (auto Sym = IndirectStubsMgr->findStub(Name, false))
+ return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
+ if (auto Sym = OptimizeLayer.findSymbol(Name, false))
+ return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
+ return RuntimeDyld::SymbolInfo(nullptr);
+ },
+ [&](const std::string &Name) {
+ if (auto AddrOrErr = Remote.getSymbolAddress(Name))
+ return RuntimeDyld::SymbolInfo(*AddrOrErr,
+ JITSymbolFlags::Exported);
+ else {
+ logAllUnhandledErrors(AddrOrErr.takeError(), errs(),
+ "Error resolving remote symbol:");
+ exit(1);
+ }
+ return RuntimeDyld::SymbolInfo(nullptr);
+ });
+
+ std::unique_ptr<MyRemote::RCMemoryManager> MemMgr;
+ if (auto Err = Remote.createRemoteMemoryManager(MemMgr)) {
+ logAllUnhandledErrors(std::move(Err), errs(),
+ "Error creating remote memory manager:");
+ exit(1);
+ }
+
+ // Build a singlton module set to hold our module.
+ std::vector<std::unique_ptr<Module>> Ms;
+ Ms.push_back(std::move(M));
+
+ // Add the set to the JIT with the resolver we created above and a newly
+ // created SectionMemoryManager.
+ return OptimizeLayer.addModuleSet(std::move(Ms),
+ std::move(MemMgr),
+ std::move(Resolver));
+ }
+
+ Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
+ // Create a CompileCallback - this is the re-entry point into the compiler
+ // for functions that haven't been compiled yet.
+ auto CCInfo = CompileCallbackMgr->getCompileCallback();
+
+ // Create an indirect stub. This serves as the functions "canonical
+ // definition" - an unchanging (constant address) entry point to the
+ // function implementation.
+ // Initially we point the stub's function-pointer at the compile callback
+ // that we just created. In the compile action for the callback (see below)
+ // we will update the stub's function pointer to point at the function
+ // implementation that we just implemented.
+ if (auto Err = IndirectStubsMgr->createStub(mangle(FnAST->getName()),
+ CCInfo.getAddress(),
+ JITSymbolFlags::Exported))
+ return Err;
+
+ // Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
+ // capture-by-move, which is be required for unique_ptr.
+ auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));
+
+ // Set the action to compile our AST. This lambda will be run if/when
+ // execution hits the compile callback (via the stub).
+ //
+ // The steps to compile are:
+ // (1) IRGen the function.
+ // (2) Add the IR module to the JIT to make it executable like any other
+ // module.
+ // (3) Use findSymbol to get the address of the compiled function.
+ // (4) Update the stub pointer to point at the implementation so that
+ /// subsequent calls go directly to it and bypass the compiler.
+ // (5) Return the address of the implementation: this lambda will actually
+ // be run inside an attempted call to the function, and we need to
+ // continue on to the implementation to complete the attempted call.
+ // The JIT runtime (the resolver block) will use the return address of
+ // this function as the address to continue at once it has reset the
+ // CPU state to what it was immediately before the call.
+ CCInfo.setCompileAction(
+ [this, SharedFnAST]() {
+ auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
+ addModule(std::move(M));
+ auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
+ assert(Sym && "Couldn't find compiled function?");
+ TargetAddress SymAddr = Sym.getAddress();
+ if (auto Err =
+ IndirectStubsMgr->updatePointer(mangle(SharedFnAST->getName()),
+ SymAddr)) {
+ logAllUnhandledErrors(std::move(Err), errs(),
+ "Error updating function pointer: ");
+ exit(1);
+ }
+
+ return SymAddr;
+ });
+
+ return Error::success();
+ }
+
+ Error executeRemoteExpr(TargetAddress ExprAddr) {
+ return Remote.callVoidVoid(ExprAddr);
+ }
+
+ JITSymbol findSymbol(const std::string Name) {
+ return OptimizeLayer.findSymbol(mangle(Name), true);
+ }
+
+ void removeModule(ModuleHandle H) {
+ OptimizeLayer.removeModuleSet(H);
+ }
+
+private:
+
+ std::string mangle(const std::string &Name) {
+ std::string MangledName;
+ raw_string_ostream MangledNameStream(MangledName);
+ Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
+ return MangledNameStream.str();
+ }
+
+ std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
+ // Create a function pass manager.
+ auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());
+
+ // Add some optimizations.
+ FPM->add(createInstructionCombiningPass());
+ FPM->add(createReassociatePass());
+ FPM->add(createGVNPass());
+ FPM->add(createCFGSimplificationPass());
+ FPM->doInitialization();
+
+ // Run the optimizations over all functions in the module being added to
+ // the JIT.
+ for (auto &F : *M)
+ FPM->run(F);
+
+ return M;
+ }
+
+};
+
+} // end namespace orc
+} // end namespace llvm
+
+#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
diff --git a/examples/Kaleidoscope/BuildingAJIT/Chapter5/RemoteJITUtils.h b/examples/Kaleidoscope/BuildingAJIT/Chapter5/RemoteJITUtils.h
new file mode 100644
index 00000000000..869d0a7ef39
--- /dev/null
+++ b/examples/Kaleidoscope/BuildingAJIT/Chapter5/RemoteJITUtils.h
@@ -0,0 +1,74 @@
+//===-- RemoteJITUtils.h - Utilities for remote-JITing with LLI -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Utilities for remote-JITing with LLI.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TOOLS_LLI_REMOTEJITUTILS_H
+#define LLVM_TOOLS_LLI_REMOTEJITUTILS_H
+
+#include "llvm/ExecutionEngine/Orc/RPCChannel.h"
+#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
+#include <mutex>
+
+#if !defined(_MSC_VER) && !defined(__MINGW32__)
+#include <unistd.h>
+#else
+#include <io.h>
+#endif
+
+/// RPC channel that reads from and writes from file descriptors.
+class FDRPCChannel final : public llvm::orc::remote::RPCChannel {
+public:
+ FDRPCChannel(int InFD, int OutFD) : InFD(InFD), OutFD(OutFD) {}
+
+ llvm::Error readBytes(char *Dst, unsigned Size) override {
+ assert(Dst && "Attempt to read into null.");
+ ssize_t Completed = 0;
+ while (Completed < static_cast<ssize_t>(Size)) {
+ ssize_t Read = ::read(InFD, Dst + Completed, Size - Completed);
+ if (Read <= 0) {
+ auto ErrNo = errno;
+ if (ErrNo == EAGAIN || ErrNo == EINTR)
+ continue;
+ else
+ return llvm::errorCodeToError(
+ std::error_code(errno, std::generic_category()));
+ }
+ Completed += Read;
+ }
+ return llvm::Error::success();
+ }
+
+ llvm::Error appendBytes(const char *Src, unsigned Size) override {
+ assert(Src && "Attempt to append from null.");
+ ssize_t Completed = 0;
+ while (Completed < static_cast<ssize_t>(Size)) {
+ ssize_t Written = ::write(OutFD, Src + Completed, Size - Completed);
+ if (Written < 0) {
+ auto ErrNo = errno;
+ if (ErrNo == EAGAIN || ErrNo == EINTR)
+ continue;
+ else
+ return llvm::errorCodeToError(
+ std::error_code(errno, std::generic_category()));
+ }
+ Completed += Written;
+ }
+ return llvm::Error::success();
+ }
+
+ llvm::Error send() override { return llvm::Error::success(); }
+
+private:
+ int InFD, OutFD;
+};
+
+#endif
diff --git a/examples/Kaleidoscope/BuildingAJIT/Chapter5/Server/CMakeLists.txt b/examples/Kaleidoscope/BuildingAJIT/Chapter5/Server/CMakeLists.txt
new file mode 100644
index 00000000000..15dd53516ce
--- /dev/null
+++ b/examples/Kaleidoscope/BuildingAJIT/Chapter5/Server/CMakeLists.txt
@@ -0,0 +1,17 @@
+set(LLVM_LINK_COMPONENTS
+ Analysis
+ Core
+ ExecutionEngine
+ InstCombine
+ Object
+ OrcJIT
+ RuntimeDyld
+ ScalarOpts
+ Support
+ TransformUtils
+ native
+ )
+
+add_kaleidoscope_chapter(BuildingAJIT-Ch5-Server
+ server.cpp
+ )
diff --git a/examples/Kaleidoscope/BuildingAJIT/Chapter5/Server/server.cpp b/examples/Kaleidoscope/BuildingAJIT/Chapter5/Server/server.cpp
new file mode 100644
index 00000000000..c53e22fe83a
--- /dev/null
+++ b/examples/Kaleidoscope/BuildingAJIT/Chapter5/Server/server.cpp
@@ -0,0 +1,119 @@
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/TargetSelect.h"
+#include "llvm/ExecutionEngine/Orc/OrcRemoteTargetServer.h"
+#include "llvm/ExecutionEngine/Orc/OrcABISupport.h"
+
+#include "../RemoteJITUtils.h"
+
+#include <cstring>
+#include <unistd.h>
+#include <netinet/in.h>
+#include <sys/socket.h>
+
+
+using namespace llvm;
+using namespace llvm::orc;
+
+// Command line argument for TCP port.
+cl::opt<uint32_t> Port("port",
+ cl::desc("TCP port to listen on"),
+ cl::init(20000));
+
+ExitOnError ExitOnErr;
+
+typedef int (*MainFun)(int, const char*[]);
+
+template <typename NativePtrT>
+NativePtrT MakeNative(uint64_t P) {
+ return reinterpret_cast<NativePtrT>(static_cast<uintptr_t>(P));
+}
+
+extern "C"
+void printExprResult(double Val) {
+ printf("Expression evaluated to: %f\n", Val);
+}
+
+// --- LAZY COMPILE TEST ---
+int main(int argc, char* argv[]) {
+
+ if (argc == 0)
+ ExitOnErr.setBanner("jit_server: ");
+ else
+ ExitOnErr.setBanner(std::string(argv[0]) + ": ");
+
+ // --- Initialize LLVM ---
+ cl::ParseCommandLineOptions(argc, argv, "LLVM lazy JIT example.\n");
+
+ InitializeNativeTarget();
+ InitializeNativeTargetAsmPrinter();
+ InitializeNativeTargetAsmParser();
+
+ if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr)) {
+ errs() << "Error loading program symbols.\n";
+ return 1;
+ }
+
+ // --- Initialize remote connection ---
+
+ int sockfd = socket(PF_INET, SOCK_STREAM, 0);
+ sockaddr_in servAddr, clientAddr;
+ socklen_t clientAddrLen = sizeof(clientAddr);
+ bzero(&servAddr, sizeof(servAddr));
+ servAddr.sin_family = PF_INET;
+ servAddr.sin_family = INADDR_ANY;
+ servAddr.sin_port = htons(Port);
+
+ {
+ // avoid "Address already in use" error.
+ int yes=1;
+ if (setsockopt(sockfd,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -1) {
+ errs() << "Error calling setsockopt.\n";
+ return 1;
+ }
+ }
+
+ if (bind(sockfd, reinterpret_cast<sockaddr*>(&servAddr),
+ sizeof(servAddr)) < 0) {
+ errs() << "Error on binding.\n";
+ return 1;
+ }
+ listen(sockfd, 1);
+ int newsockfd = accept(sockfd, reinterpret_cast<sockaddr*>(&clientAddr),
+ &clientAddrLen);
+
+ auto SymbolLookup =
+ [](const std::string &Name) {
+ return RTDyldMemoryManager::getSymbolAddressInProcess(Name);
+ };
+
+ auto RegisterEHFrames =
+ [](uint8_t *Addr, uint32_t Size) {
+ RTDyldMemoryManager::registerEHFramesInProcess(Addr, Size);
+ };
+
+ auto DeregisterEHFrames =
+ [](uint8_t *Addr, uint32_t Size) {
+ RTDyldMemoryManager::deregisterEHFramesInProcess(Addr, Size);
+ };
+
+ FDRPCChannel TCPChannel(newsockfd, newsockfd);
+ typedef remote::OrcRemoteTargetServer<FDRPCChannel, OrcX86_64_SysV> MyServerT;
+
+ MyServerT Server(TCPChannel, SymbolLookup, RegisterEHFrames, DeregisterEHFrames);
+
+ while (1) {
+ MyServerT::JITFuncId Id = MyServerT::InvalidId;
+ ExitOnErr(Server.startReceivingFunction(TCPChannel, (uint32_t&)Id));
+ switch (Id) {
+ case MyServerT::TerminateSessionId:
+ ExitOnErr(Server.handleTerminateSession());
+ return 0;
+ default:
+ ExitOnErr(Server.handleKnownFunction(Id));
+ break;
+ }
+ }
+
+ llvm_unreachable("Fell through server command loop.");
+}
diff --git a/examples/Kaleidoscope/BuildingAJIT/Chapter5/toy.cpp b/examples/Kaleidoscope/BuildingAJIT/Chapter5/toy.cpp
new file mode 100644
index 00000000000..9c21098971a
--- /dev/null
+++ b/examples/Kaleidoscope/BuildingAJIT/Chapter5/toy.cpp
@@ -0,0 +1,1294 @@
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/LegacyPassManager.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/TargetSelect.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/GVN.h"
+#include "KaleidoscopeJIT.h"
+#include <cassert>
+#include <cctype>
+#include <cstdint>
+#include <cstdio>
+#include <cstdlib>
+#include <map>
+#include <memory>
+#include <string>
+#include <utility>
+#include <vector>
+
+#include <netdb.h>
+#include <unistd.h>
+#include <netinet/in.h>
+#include <sys/socket.h>
+
+using namespace llvm;
+using namespace llvm::orc;
+
+// Command line argument for TCP hostname.
+cl::opt<std::string> HostName("hostname",
+ cl::desc("TCP hostname to connect to"),
+ cl::init("localhost"));
+
+// Command line argument for TCP port.
+cl::opt<uint32_t> Port("port",
+ cl::desc("TCP port to connect to"),
+ cl::init(20000));
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2,
+ tok_extern = -3,
+
+ // primary
+ tok_identifier = -4,
+ tok_number = -5,
+
+ // control
+ tok_if = -6,
+ tok_then = -7,
+ tok_else = -8,
+ tok_for = -9,
+ tok_in = -10,
+
+ // operators
+ tok_binary = -11,
+ tok_unary = -12,
+
+ // var definition
+ tok_var = -13
+};
+
+static std::string IdentifierStr; // Filled in if tok_identifier
+static double NumVal; // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def")
+ return tok_def;
+ if (IdentifierStr == "extern")
+ return tok_extern;
+ if (IdentifierStr == "if")
+ return tok_if;
+ if (IdentifierStr == "then")
+ return tok_then;
+ if (IdentifierStr == "else")
+ return tok_else;
+ if (IdentifierStr == "for")
+ return tok_for;
+ if (IdentifierStr == "in")
+ return tok_in;
+ if (IdentifierStr == "binary")
+ return tok_binary;
+ if (IdentifierStr == "unary")
+ return tok_unary;
+ if (IdentifierStr == "var")
+ return tok_var;
+ return tok_identifier;
+ }
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), nullptr);
+ return tok_number;
+ }
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do
+ LastChar = getchar();
+ while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+ virtual ~ExprAST() {}
+ virtual Value *codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+ double Val;
+
+public:
+ NumberExprAST(double Val) : Val(Val) {}
+ Value *codegen() override;
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+ std::string Name;
+
+public:
+ VariableExprAST(const std::string &Name) : Name(Name) {}
+ const std::string &getName() const { return Name; }
+ Value *codegen() override;
+};
+
+/// UnaryExprAST - Expression class for a unary operator.
+class UnaryExprAST : public ExprAST {
+ char Opcode;
+ std::unique_ptr<ExprAST> Operand;
+
+public:
+ UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
+ : Opcode(Opcode), Operand(std::move(Operand)) {}
+ Value *codegen() override;
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+ char Op;
+ std::unique_ptr<ExprAST> LHS, RHS;
+
+public:
+ BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
+ std::unique_ptr<ExprAST> RHS)
+ : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
+ Value *codegen() override;
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+ std::string Callee;
+ std::vector<std::unique_ptr<ExprAST>> Args;
+
+public:
+ CallExprAST(const std::string &Callee,
+ std::vector<std::unique_ptr<ExprAST>> Args)
+ : Callee(Callee), Args(std::move(Args)) {}
+ Value *codegen() override;
+};
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+ std::unique_ptr<ExprAST> Cond, Then, Else;
+
+public:
+ IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
+ std::unique_ptr<ExprAST> Else)
+ : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
+ Value *codegen() override;
+};
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+ std::string VarName;
+ std::unique_ptr<ExprAST> Start, End, Step, Body;
+
+public:
+ ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
+ std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
+ std::unique_ptr<ExprAST> Body)
+ : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
+ Step(std::move(Step)), Body(std::move(Body)) {}
+ Value *codegen() override;
+};
+
+/// VarExprAST - Expression class for var/in
+class VarExprAST : public ExprAST {
+ std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
+ std::unique_ptr<ExprAST> Body;
+
+public:
+ VarExprAST(
+ std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
+ std::unique_ptr<ExprAST> Body)
+ : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
+ Value *codegen() override;
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its name, and its argument names (thus implicitly the number
+/// of arguments the function takes), as well as if it is an operator.
+class PrototypeAST {
+ std::string Name;
+ std::vector<std::string> Args;
+ bool IsOperator;
+ unsigned Precedence; // Precedence if a binary op.
+
+public:
+ PrototypeAST(const std::string &Name, std::vector<std::string> Args,
+ bool IsOperator = false, unsigned Prec = 0)
+ : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
+ Precedence(Prec) {}
+ Function *codegen();
+ const std::string &getName() const { return Name; }
+
+ bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
+
+ char getOperatorName() const {
+ assert(isUnaryOp() || isBinaryOp());
+ return Name[Name.size() - 1];
+ }
+
+ unsigned getBinaryPrecedence() const { return Precedence; }
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
+/// token the parser is looking at. getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() { return CurTok = gettok(); }
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+ if (!isascii(CurTok))
+ return -1;
+
+ // Make sure it's a declared binop.
+ int TokPrec = BinopPrecedence[CurTok];
+ if (TokPrec <= 0)
+ return -1;
+ return TokPrec;
+}
+
+/// LogError* - These are little helper functions for error handling.
+std::unique_ptr<ExprAST> LogError(const char *Str) {
+ fprintf(stderr, "Error: %s\n", Str);
+ return nullptr;
+}
+
+std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
+ LogError(Str);
+ return nullptr;
+}
+
+static std::unique_ptr<ExprAST> ParseExpression();
+
+/// numberexpr ::= number
+static std::unique_ptr<ExprAST> ParseNumberExpr() {
+ auto Result = llvm::make_unique<NumberExprAST>(NumVal);
+ getNextToken(); // consume the number
+ return std::move(Result);
+}
+
+/// parenexpr ::= '(' expression ')'
+static std::unique_ptr<ExprAST> ParseParenExpr() {
+ getNextToken(); // eat (.
+ auto V = ParseExpression();
+ if (!V)
+ return nullptr;
+
+ if (CurTok != ')')
+ return LogError("expected ')'");
+ getNextToken(); // eat ).
+ return V;
+}
+
+/// identifierexpr
+/// ::= identifier
+/// ::= identifier '(' expression* ')'
+static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
+ std::string IdName = IdentifierStr;
+
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '(') // Simple variable ref.
+ return llvm::make_unique<VariableExprAST>(IdName);
+
+ // Call.
+ getNextToken(); // eat (
+ std::vector<std::unique_ptr<ExprAST>> Args;
+ if (CurTok != ')') {
+ while (true) {
+ if (auto Arg = ParseExpression())
+ Args.push_back(std::move(Arg));
+ else
+ return nullptr;
+
+ if (CurTok == ')')
+ break;
+
+ if (CurTok != ',')
+ return LogError("Expected ')' or ',' in argument list");
+ getNextToken();
+ }
+ }
+
+ // Eat the ')'.
+ getNextToken();
+
+ return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
+}
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static std::unique_ptr<ExprAST> ParseIfExpr() {
+ getNextToken(); // eat the if.
+
+ // condition.
+ auto Cond = ParseExpression();
+ if (!Cond)
+ return nullptr;
+
+ if (CurTok != tok_then)
+ return LogError("expected then");
+ getNextToken(); // eat the then
+
+ auto Then = ParseExpression();
+ if (!Then)
+ return nullptr;
+
+ if (CurTok != tok_else)
+ return LogError("expected else");
+
+ getNextToken();
+
+ auto Else = ParseExpression();
+ if (!Else)
+ return nullptr;
+
+ return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
+ std::move(Else));
+}
+
+/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+static std::unique_ptr<ExprAST> ParseForExpr() {
+ getNextToken(); // eat the for.
+
+ if (CurTok != tok_identifier)
+ return LogError("expected identifier after for");
+
+ std::string IdName = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '=')
+ return LogError("expected '=' after for");
+ getNextToken(); // eat '='.
+
+ auto Start = ParseExpression();
+ if (!Start)
+ return nullptr;
+ if (CurTok != ',')
+ return LogError("expected ',' after for start value");
+ getNextToken();
+
+ auto End = ParseExpression();
+ if (!End)
+ return nullptr;
+
+ // The step value is optional.
+ std::unique_ptr<ExprAST> Step;
+ if (CurTok == ',') {
+ getNextToken();
+ Step = ParseExpression();
+ if (!Step)
+ return nullptr;
+ }
+
+ if (CurTok != tok_in)
+ return LogError("expected 'in' after for");
+ getNextToken(); // eat 'in'.
+
+ auto Body = ParseExpression();
+ if (!Body)
+ return nullptr;
+
+ return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
+ std::move(Step), std::move(Body));
+}
+
+/// varexpr ::= 'var' identifier ('=' expression)?
+// (',' identifier ('=' expression)?)* 'in' expression
+static std::unique_ptr<ExprAST> ParseVarExpr() {
+ getNextToken(); // eat the var.
+
+ std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
+
+ // At least one variable name is required.
+ if (CurTok != tok_identifier)
+ return LogError("expected identifier after var");
+
+ while (true) {
+ std::string Name = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ // Read the optional initializer.
+ std::unique_ptr<ExprAST> Init = nullptr;
+ if (CurTok == '=') {
+ getNextToken(); // eat the '='.
+
+ Init = ParseExpression();
+ if (!Init)
+ return nullptr;
+ }
+
+ VarNames.push_back(std::make_pair(Name, std::move(Init)));
+
+ // End of var list, exit loop.
+ if (CurTok != ',')
+ break;
+ getNextToken(); // eat the ','.
+
+ if (CurTok != tok_identifier)
+ return LogError("expected identifier list after var");
+ }
+
+ // At this point, we have to have 'in'.
+ if (CurTok != tok_in)
+ return LogError("expected 'in' keyword after 'var'");
+ getNextToken(); // eat 'in'.
+
+ auto Body = ParseExpression();
+ if (!Body)
+ return nullptr;
+
+ return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
+}
+
+/// primary
+/// ::= identifierexpr
+/// ::= numberexpr
+/// ::= parenexpr
+/// ::= ifexpr
+/// ::= forexpr
+/// ::= varexpr
+static std::unique_ptr<ExprAST> ParsePrimary() {
+ switch (CurTok) {
+ default:
+ return LogError("unknown token when expecting an expression");
+ case tok_identifier:
+ return ParseIdentifierExpr();
+ case tok_number:
+ return ParseNumberExpr();
+ case '(':
+ return ParseParenExpr();
+ case tok_if:
+ return ParseIfExpr();
+ case tok_for:
+ return ParseForExpr();
+ case tok_var:
+ return ParseVarExpr();
+ }
+}
+
+/// unary
+/// ::= primary
+/// ::= '!' unary
+static std::unique_ptr<ExprAST> ParseUnary() {
+ // If the current token is not an operator, it must be a primary expr.
+ if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+ return ParsePrimary();
+
+ // If this is a unary operator, read it.
+ int Opc = CurTok;
+ getNextToken();
+ if (auto Operand = ParseUnary())
+ return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
+ return nullptr;
+}
+
+/// binoprhs
+/// ::= ('+' unary)*
+static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
+ std::unique_ptr<ExprAST> LHS) {
+ // If this is a binop, find its precedence.
+ while (true) {
+ int TokPrec = GetTokPrecedence();
+
+ // If this is a binop that binds at least as tightly as the current binop,
+ // consume it, otherwise we are done.
+ if (TokPrec < ExprPrec)
+ return LHS;
+
+ // Okay, we know this is a binop.
+ int BinOp = CurTok;
+ getNextToken(); // eat binop
+
+ // Parse the unary expression after the binary operator.
+ auto RHS = ParseUnary();
+ if (!RHS)
+ return nullptr;
+
+ // If BinOp binds less tightly with RHS than the operator after RHS, let
+ // the pending operator take RHS as its LHS.
+ int NextPrec = GetTokPrecedence();
+ if (TokPrec < NextPrec) {
+ RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
+ if (!RHS)
+ return nullptr;
+ }
+
+ // Merge LHS/RHS.
+ LHS =
+ llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
+ }
+}
+
+/// expression
+/// ::= unary binoprhs
+///
+static std::unique_ptr<ExprAST> ParseExpression() {
+ auto LHS = ParseUnary();
+ if (!LHS)
+ return nullptr;
+
+ return ParseBinOpRHS(0, std::move(LHS));
+}
+
+/// prototype
+/// ::= id '(' id* ')'
+/// ::= binary LETTER number? (id, id)
+/// ::= unary LETTER (id)
+static std::unique_ptr<PrototypeAST> ParsePrototype() {
+ std::string FnName;
+
+ unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;
+
+ switch (CurTok) {
+ default:
+ return LogErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ case tok_unary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return LogErrorP("Expected unary operator");
+ FnName = "unary";
+ FnName += (char)CurTok;
+ Kind = 1;
+ getNextToken();
+ break;
+ case tok_binary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return LogErrorP("Expected binary operator");
+ FnName = "binary";
+ FnName += (char)CurTok;
+ Kind = 2;
+ getNextToken();
+
+ // Read the precedence if present.
+ if (CurTok == tok_number) {
+ if (NumVal < 1 || NumVal > 100)
+ return LogErrorP("Invalid precedecnce: must be 1..100");
+ BinaryPrecedence = (unsigned)NumVal;
+ getNextToken();
+ }
+ break;
+ }
+
+ if (CurTok != '(')
+ return LogErrorP("Expected '(' in prototype");
+
+ std::vector<std::string> ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return LogErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ // Verify right number of names for operator.
+ if (Kind && ArgNames.size() != Kind)
+ return LogErrorP("Invalid number of operands for operator");
+
+ return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
+ BinaryPrecedence);
+}
+
+/// definition ::= 'def' prototype expression
+static std::unique_ptr<FunctionAST> ParseDefinition() {
+ getNextToken(); // eat def.
+ auto Proto = ParsePrototype();
+ if (!Proto)
+ return nullptr;
+
+ if (auto E = ParseExpression())
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
+ return nullptr;
+}
+
+/// toplevelexpr ::= expression
+static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
+ if (auto E = ParseExpression()) {
+
+ auto PEArgs = std::vector<std::unique_ptr<ExprAST>>();
+ PEArgs.push_back(std::move(E));
+ auto PrintExpr =
+ llvm::make_unique<CallExprAST>("printExprResult", std::move(PEArgs));
+
+ // Make an anonymous proto.
+ auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
+ std::vector<std::string>());
+ return llvm::make_unique<FunctionAST>(std::move(Proto),
+ std::move(PrintExpr));
+ }
+ return nullptr;
+}
+
+/// external ::= 'extern' prototype
+static std::unique_ptr<PrototypeAST> ParseExtern() {
+ getNextToken(); // eat extern.
+ return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static LLVMContext TheContext;
+static IRBuilder<> Builder(TheContext);
+static std::unique_ptr<Module> TheModule;
+static std::map<std::string, AllocaInst *> NamedValues;
+static std::unique_ptr<KaleidoscopeJIT> TheJIT;
+static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
+static ExitOnError ExitOnErr;
+
+Value *LogErrorV(const char *Str) {
+ LogError(Str);
+ return nullptr;
+}
+
+Function *getFunction(std::string Name) {
+ // First, see if the function has already been added to the current module.
+ if (auto *F = TheModule->getFunction(Name))
+ return F;
+
+ // If not, check whether we can codegen the declaration from some existing
+ // prototype.
+ auto FI = FunctionProtos.find(Name);
+ if (FI != FunctionProtos.end())
+ return FI->second->codegen();
+
+ // If no existing prototype exists, return null.
+ return nullptr;
+}
+
+/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+/// the function. This is used for mutable variables etc.
+static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+ const std::string &VarName) {
+ IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
+ TheFunction->getEntryBlock().begin());
+ return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
+}
+
+Value *NumberExprAST::codegen() {
+ return ConstantFP::get(TheContext, APFloat(Val));
+}
+
+Value *VariableExprAST::codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ if (!V)
+ return LogErrorV("Unknown variable name");
+
+ // Load the value.
+ return Builder.CreateLoad(V, Name.c_str());
+}
+
+Value *UnaryExprAST::codegen() {
+ Value *OperandV = Operand->codegen();
+ if (!OperandV)
+ return nullptr;
+
+ Function *F = getFunction(std::string("unary") + Opcode);
+ if (!F)
+ return LogErrorV("Unknown unary operator");
+
+ return Builder.CreateCall(F, OperandV, "unop");
+}
+
+Value *BinaryExprAST::codegen() {
+ // Special case '=' because we don't want to emit the LHS as an expression.
+ if (Op == '=') {
+ // Assignment requires the LHS to be an identifier.
+ // This assume we're building without RTTI because LLVM builds that way by
+ // default. If you build LLVM with RTTI this can be changed to a
+ // dynamic_cast for automatic error checking.
+ VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
+ if (!LHSE)
+ return LogErrorV("destination of '=' must be a variable");
+ // Codegen the RHS.
+ Value *Val = RHS->codegen();
+ if (!Val)
+ return nullptr;
+
+ // Look up the name.
+ Value *Variable = NamedValues[LHSE->getName()];
+ if (!Variable)
+ return LogErrorV("Unknown variable name");
+
+ Builder.CreateStore(Val, Variable);
+ return Val;
+ }
+
+ Value *L = LHS->codegen();
+ Value *R = RHS->codegen();
+ if (!L || !R)
+ return nullptr;
+
+ switch (Op) {
+ case '+':
+ return Builder.CreateFAdd(L, R, "addtmp");
+ case '-':
+ return Builder.CreateFSub(L, R, "subtmp");
+ case '*':
+ return Builder.CreateFMul(L, R, "multmp");
+ case '<':
+ L = Builder.CreateFCmpULT(L, R, "cmptmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
+ default:
+ break;
+ }
+
+ // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+ // a call to it.
+ Function *F = getFunction(std::string("binary") + Op);
+ assert(F && "binary operator not found!");
+
+ Value *Ops[] = {L, R};
+ return Builder.CreateCall(F, Ops, "binop");
+}
+
+Value *CallExprAST::codegen() {
+ // Look up the name in the global module table.
+ Function *CalleeF = getFunction(Callee);
+ if (!CalleeF)
+ return LogErrorV("Unknown function referenced");
+
+ // If argument mismatch error.
+ if (CalleeF->arg_size() != Args.size())
+ return LogErrorV("Incorrect # arguments passed");
+
+ std::vector<Value *> ArgsV;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ ArgsV.push_back(Args[i]->codegen());
+ if (!ArgsV.back())
+ return nullptr;
+ }
+
+ return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+}
+
+Value *IfExprAST::codegen() {
+ Value *CondV = Cond->codegen();
+ if (!CondV)
+ return nullptr;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ CondV = Builder.CreateFCmpONE(
+ CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create blocks for the then and else cases. Insert the 'then' block at the
+ // end of the function.
+ BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
+ BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
+ BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
+
+ Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+ // Emit then value.
+ Builder.SetInsertPoint(ThenBB);
+
+ Value *ThenV = Then->codegen();
+ if (!ThenV)
+ return nullptr;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+ ThenBB = Builder.GetInsertBlock();
+
+ // Emit else block.
+ TheFunction->getBasicBlockList().push_back(ElseBB);
+ Builder.SetInsertPoint(ElseBB);
+
+ Value *ElseV = Else->codegen();
+ if (!ElseV)
+ return nullptr;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+ ElseBB = Builder.GetInsertBlock();
+
+ // Emit merge block.
+ TheFunction->getBasicBlockList().push_back(MergeBB);
+ Builder.SetInsertPoint(MergeBB);
+ PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
+
+ PN->addIncoming(ThenV, ThenBB);
+ PN->addIncoming(ElseV, ElseBB);
+ return PN;
+}
+
+// Output for-loop as:
+// var = alloca double
+// ...
+// start = startexpr
+// store start -> var
+// goto loop
+// loop:
+// ...
+// bodyexpr
+// ...
+// loopend:
+// step = stepexpr
+// endcond = endexpr
+//
+// curvar = load var
+// nextvar = curvar + step
+// store nextvar -> var
+// br endcond, loop, endloop
+// outloop:
+Value *ForExprAST::codegen() {
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create an alloca for the variable in the entry block.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start->codegen();
+ if (!StartVal)
+ return nullptr;
+
+ // Store the value into the alloca.
+ Builder.CreateStore(StartVal, Alloca);
+
+ // Make the new basic block for the loop header, inserting after current
+ // block.
+ BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
+
+ // Insert an explicit fall through from the current block to the LoopBB.
+ Builder.CreateBr(LoopBB);
+
+ // Start insertion in LoopBB.
+ Builder.SetInsertPoint(LoopBB);
+
+ // Within the loop, the variable is defined equal to the PHI node. If it
+ // shadows an existing variable, we have to restore it, so save it now.
+ AllocaInst *OldVal = NamedValues[VarName];
+ NamedValues[VarName] = Alloca;
+
+ // Emit the body of the loop. This, like any other expr, can change the
+ // current BB. Note that we ignore the value computed by the body, but don't
+ // allow an error.
+ if (!Body->codegen())
+ return nullptr;
+
+ // Emit the step value.
+ Value *StepVal = nullptr;
+ if (Step) {
+ StepVal = Step->codegen();
+ if (!StepVal)
+ return nullptr;
+ } else {
+ // If not specified, use 1.0.
+ StepVal = ConstantFP::get(TheContext, APFloat(1.0));
+ }
+
+ // Compute the end condition.
+ Value *EndCond = End->codegen();
+ if (!EndCond)
+ return nullptr;
+
+ // Reload, increment, and restore the alloca. This handles the case where
+ // the body of the loop mutates the variable.
+ Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
+ Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
+ Builder.CreateStore(NextVar, Alloca);
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ EndCond = Builder.CreateFCmpONE(
+ EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
+
+ // Create the "after loop" block and insert it.
+ BasicBlock *AfterBB =
+ BasicBlock::Create(TheContext, "afterloop", TheFunction);
+
+ // Insert the conditional branch into the end of LoopEndBB.
+ Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+ // Any new code will be inserted in AfterBB.
+ Builder.SetInsertPoint(AfterBB);
+
+ // Restore the unshadowed variable.
+ if (OldVal)
+ NamedValues[VarName] = OldVal;
+ else
+ NamedValues.erase(VarName);
+
+ // for expr always returns 0.0.
+ return Constant::getNullValue(Type::getDoubleTy(TheContext));
+}
+
+Value *VarExprAST::codegen() {
+ std::vector<AllocaInst *> OldBindings;
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Register all variables and emit their initializer.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+ const std::string &VarName = VarNames[i].first;
+ ExprAST *Init = VarNames[i].second.get();
+
+ // Emit the initializer before adding the variable to scope, this prevents
+ // the initializer from referencing the variable itself, and permits stuff
+ // like this:
+ // var a = 1 in
+ // var a = a in ... # refers to outer 'a'.
+ Value *InitVal;
+ if (Init) {
+ InitVal = Init->codegen();
+ if (!InitVal)
+ return nullptr;
+ } else { // If not specified, use 0.0.
+ InitVal = ConstantFP::get(TheContext, APFloat(0.0));
+ }
+
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+ Builder.CreateStore(InitVal, Alloca);
+
+ // Remember the old variable binding so that we can restore the binding when
+ // we unrecurse.
+ OldBindings.push_back(NamedValues[VarName]);
+
+ // Remember this binding.
+ NamedValues[VarName] = Alloca;
+ }
+
+ // Codegen the body, now that all vars are in scope.
+ Value *BodyVal = Body->codegen();
+ if (!BodyVal)
+ return nullptr;
+
+ // Pop all our variables from scope.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+ NamedValues[VarNames[i].first] = OldBindings[i];
+
+ // Return the body computation.
+ return BodyVal;
+}
+
+Function *PrototypeAST::codegen() {
+ // Make the function type: double(double,double) etc.
+ std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
+ FunctionType *FT =
+ FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
+
+ Function *F =
+ Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
+
+ // Set names for all arguments.
+ unsigned Idx = 0;
+ for (auto &Arg : F->args())
+ Arg.setName(Args[Idx++]);
+
+ return F;
+}
+
+const PrototypeAST& FunctionAST::getProto() const {
+ return *Proto;
+}
+
+const std::string& FunctionAST::getName() const {
+ return Proto->getName();
+}
+
+Function *FunctionAST::codegen() {
+ // Transfer ownership of the prototype to the FunctionProtos map, but keep a
+ // reference to it for use below.
+ auto &P = *Proto;
+ Function *TheFunction = getFunction(P.getName());
+ if (!TheFunction)
+ return nullptr;
+
+ // If this is an operator, install it.
+ if (P.isBinaryOp())
+ BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ // Record the function arguments in the NamedValues map.
+ NamedValues.clear();
+ for (auto &Arg : TheFunction->args()) {
+ // Create an alloca for this variable.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
+
+ // Store the initial value into the alloca.
+ Builder.CreateStore(&Arg, Alloca);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Arg.getName()] = Alloca;
+ }
+
+ if (Value *RetVal = Body->codegen()) {
+ // Finish off the function.
+ Builder.CreateRet(RetVal);
+
+ // Validate the generated code, checking for consistency.
+ verifyFunction(*TheFunction);
+
+ return TheFunction;
+ }
+
+ // Error reading body, remove function.
+ TheFunction->eraseFromParent();
+
+ if (P.isBinaryOp())
+ BinopPrecedence.erase(Proto->getOperatorName());
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static void InitializeModule() {
+ // Open a new module.
+ TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
+ TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
+}
+
+std::unique_ptr<llvm::Module>
+irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix) {
+ if (auto *F = FnAST.codegen()) {
+ F->setName(F->getName() + Suffix);
+ auto M = std::move(TheModule);
+ // Start a new module.
+ InitializeModule();
+ return M;
+ } else
+ report_fatal_error("Couldn't compile lazily JIT'd function");
+}
+
+static void HandleDefinition() {
+ if (auto FnAST = ParseDefinition()) {
+ FunctionProtos[FnAST->getProto().getName()] =
+ llvm::make_unique<PrototypeAST>(FnAST->getProto());
+ ExitOnErr(TheJIT->addFunctionAST(std::move(FnAST)));
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleExtern() {
+ if (auto ProtoAST = ParseExtern()) {
+ if (auto *FnIR = ProtoAST->codegen()) {
+ fprintf(stderr, "Read extern: ");
+ FnIR->dump();
+ FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleTopLevelExpression() {
+ // Evaluate a top-level expression into an anonymous function.
+ if (auto FnAST = ParseTopLevelExpr()) {
+ FunctionProtos[FnAST->getName()] =
+ llvm::make_unique<PrototypeAST>(FnAST->getProto());
+ if (FnAST->codegen()) {
+ // JIT the module containing the anonymous expression, keeping a handle so
+ // we can free it later.
+ auto H = TheJIT->addModule(std::move(TheModule));
+ InitializeModule();
+
+ // Search the JIT for the __anon_expr symbol.
+ auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
+ assert(ExprSymbol && "Function not found");
+
+ // Get the symbol's address and cast it to the right type (takes no
+ // arguments, returns a double) so we can call it as a native function.
+ ExitOnErr(TheJIT->executeRemoteExpr(ExprSymbol.getAddress()));
+
+ // Delete the anonymous expression module from the JIT.
+ TheJIT->removeModule(H);
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+ while (true) {
+ fprintf(stderr, "ready> ");
+ switch (CurTok) {
+ case tok_eof:
+ return;
+ case ';': // ignore top-level semicolons.
+ getNextToken();
+ break;
+ case tok_def:
+ HandleDefinition();
+ break;
+ case tok_extern:
+ HandleExtern();
+ break;
+ default:
+ HandleTopLevelExpression();
+ break;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C" double putchard(double X) {
+ fputc((char)X, stderr);
+ return 0;
+}
+
+/// printd - printf that takes a double prints it as "%f\n", returning 0.
+extern "C" double printd(double X) {
+ fprintf(stderr, "%f\n", X);
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// TCP / Connection setup code.
+//===----------------------------------------------------------------------===//
+
+std::unique_ptr<FDRPCChannel> connect() {
+ int sockfd = socket(PF_INET, SOCK_STREAM, 0);
+ hostent *server = gethostbyname(HostName.c_str());
+
+ if (!server) {
+ errs() << "Could not find host " << HostName << "\n";
+ exit(1);
+ }
+
+ sockaddr_in servAddr;
+ bzero(&servAddr, sizeof(servAddr));
+ servAddr.sin_family = PF_INET;
+ bcopy(server->h_addr, &servAddr.sin_addr.s_addr, server->h_length);
+ servAddr.sin_port = htons(Port);
+ if (connect(sockfd, reinterpret_cast<sockaddr*>(&servAddr),
+ sizeof(servAddr)) < 0) {
+ errs() << "Failure to connect.\n";
+ exit(1);
+ }
+
+ return llvm::make_unique<FDRPCChannel>(sockfd, sockfd);
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main(int argc, char *argv[]) {
+ // Parse the command line options.
+ cl::ParseCommandLineOptions(argc, argv, "Building A JIT - Client.\n");
+
+ InitializeNativeTarget();
+ InitializeNativeTargetAsmPrinter();
+ InitializeNativeTargetAsmParser();
+
+ ExitOnErr.setBanner("Kaleidoscope: ");
+
+ // Install standard binary operators.
+ // 1 is lowest precedence.
+ BinopPrecedence['='] = 2;
+ BinopPrecedence['<'] = 10;
+ BinopPrecedence['+'] = 20;
+ BinopPrecedence['-'] = 20;
+ BinopPrecedence['*'] = 40; // highest.
+
+ auto TCPChannel = connect();
+ MyRemote Remote = ExitOnErr(MyRemote::Create(*TCPChannel));
+ TheJIT = llvm::make_unique<KaleidoscopeJIT>(Remote);
+
+ // Automatically inject a definition for 'printExprResult'.
+ FunctionProtos["printExprResult"] =
+ llvm::make_unique<PrototypeAST>("printExprResult",
+ std::vector<std::string>({"Val"}));
+
+ // Prime the first token.
+ fprintf(stderr, "ready> ");
+ getNextToken();
+
+ InitializeModule();
+
+ // Run the main "interpreter loop" now.
+ MainLoop();
+
+ // Delete the JIT before the Remote and Channel go out of scope, otherwise
+ // we'll crash in the JIT destructor when it tries to release remote
+ // resources over a channel that no longer exists.
+ TheJIT = nullptr;
+
+ // Send a terminate message to the remote to tell it to exit cleanly.
+ ExitOnErr(Remote.terminateSession());
+
+ return 0;
+}