/* log2l.c * Base 2 logarithm, 128-bit long double precision * * * * SYNOPSIS: * * long double x, y, log2l(); * * y = log2l( x ); * * * * DESCRIPTION: * * Returns the base 2 logarithm of x. * * The argument is separated into its exponent and fractional * parts. If the exponent is between -1 and +1, the (natural) * logarithm of the fraction is approximated by * * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). * * Otherwise, setting z = 2(x-1)/x+1), * * log(x) = z + z^3 P(z)/Q(z). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35 * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35 * * In the tests over the interval exp(+-10000), the logarithms * of the random arguments were uniformly distributed over * [-10000, +10000]. * */ /* Cephes Math Library Release 2.2: January, 1991 Copyright 1984, 1991 by Stephen L. Moshier Adapted for glibc November, 2001 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, see . */ #include #include /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 5.3e-37, * relative peak error spread = 2.3e-14 */ static const _Float128 P[13] = { L(1.313572404063446165910279910527789794488E4), L(7.771154681358524243729929227226708890930E4), L(2.014652742082537582487669938141683759923E5), L(3.007007295140399532324943111654767187848E5), L(2.854829159639697837788887080758954924001E5), L(1.797628303815655343403735250238293741397E5), L(7.594356839258970405033155585486712125861E4), L(2.128857716871515081352991964243375186031E4), L(3.824952356185897735160588078446136783779E3), L(4.114517881637811823002128927449878962058E2), L(2.321125933898420063925789532045674660756E1), L(4.998469661968096229986658302195402690910E-1), L(1.538612243596254322971797716843006400388E-6) }; static const _Float128 Q[12] = { L(3.940717212190338497730839731583397586124E4), L(2.626900195321832660448791748036714883242E5), L(7.777690340007566932935753241556479363645E5), L(1.347518538384329112529391120390701166528E6), L(1.514882452993549494932585972882995548426E6), L(1.158019977462989115839826904108208787040E6), L(6.132189329546557743179177159925690841200E5), L(2.248234257620569139969141618556349415120E5), L(5.605842085972455027590989944010492125825E4), L(9.147150349299596453976674231612674085381E3), L(9.104928120962988414618126155557301584078E2), L(4.839208193348159620282142911143429644326E1) /* 1.000000000000000000000000000000000000000E0L, */ }; /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), * where z = 2(x-1)/(x+1) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 1.1e-35, * relative peak error spread 1.1e-9 */ static const _Float128 R[6] = { L(1.418134209872192732479751274970992665513E5), L(-8.977257995689735303686582344659576526998E4), L(2.048819892795278657810231591630928516206E4), L(-2.024301798136027039250415126250455056397E3), L(8.057002716646055371965756206836056074715E1), L(-8.828896441624934385266096344596648080902E-1) }; static const _Float128 S[6] = { L(1.701761051846631278975701529965589676574E6), L(-1.332535117259762928288745111081235577029E6), L(4.001557694070773974936904547424676279307E5), L(-5.748542087379434595104154610899551484314E4), L(3.998526750980007367835804959888064681098E3), L(-1.186359407982897997337150403816839480438E2) /* 1.000000000000000000000000000000000000000E0L, */ }; static const _Float128 /* log2(e) - 1 */ LOG2EA = L(4.4269504088896340735992468100189213742664595E-1), /* sqrt(2)/2 */ SQRTH = L(7.071067811865475244008443621048490392848359E-1); /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ static _Float128 neval (_Float128 x, const _Float128 *p, int n) { _Float128 y; p += n; y = *p--; do { y = y * x + *p--; } while (--n > 0); return y; } /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ static _Float128 deval (_Float128 x, const _Float128 *p, int n) { _Float128 y; p += n; y = x + *p--; do { y = y * x + *p--; } while (--n > 0); return y; } _Float128 __ieee754_log2l (_Float128 x) { _Float128 z; _Float128 y; int e; int64_t hx, lx; /* Test for domain */ GET_LDOUBLE_WORDS64 (hx, lx, x); if (((hx & 0x7fffffffffffffffLL) | lx) == 0) return (-1 / fabsl (x)); /* log2l(+-0)=-inf */ if (hx < 0) return (x - x) / (x - x); if (hx >= 0x7fff000000000000LL) return (x + x); if (x == 1) return 0; /* separate mantissa from exponent */ /* Note, frexp is used so that denormal numbers * will be handled properly. */ x = __frexpl (x, &e); /* logarithm using log(x) = z + z**3 P(z)/Q(z), * where z = 2(x-1)/x+1) */ if ((e > 2) || (e < -2)) { if (x < SQRTH) { /* 2( 2x-1 )/( 2x+1 ) */ e -= 1; z = x - L(0.5); y = L(0.5) * z + L(0.5); } else { /* 2 (x-1)/(x+1) */ z = x - L(0.5); z -= L(0.5); y = L(0.5) * x + L(0.5); } x = z / y; z = x * x; y = x * (z * neval (z, R, 5) / deval (z, S, 5)); goto done; } /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ if (x < SQRTH) { e -= 1; x = 2.0 * x - 1; /* 2x - 1 */ } else { x = x - 1; } z = x * x; y = x * (z * neval (x, P, 12) / deval (x, Q, 11)); y = y - 0.5 * z; done: /* Multiply log of fraction by log2(e) * and base 2 exponent by 1 */ z = y * LOG2EA; z += x * LOG2EA; z += y; z += x; z += e; return (z); } strong_alias (__ieee754_log2l, __log2l_finite)