/* Return value of complex exponential function for complex __float128 value. Copyright (C) 1997-2012 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "quadmath-imp.h" #ifdef HAVE_FENV_H # include #endif __complex128 cexpq (__complex128 x) { __complex128 retval; int rcls = fpclassifyq (__real__ x); int icls = fpclassifyq (__imag__ x); if (__builtin_expect (rcls >= QUADFP_ZERO, 1)) { /* Real part is finite. */ if (__builtin_expect (icls >= QUADFP_ZERO, 1)) { /* Imaginary part is finite. */ const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q); __float128 sinix, cosix; if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1)) { sincosq (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0Q; } if (__real__ x > t) { __float128 exp_t = expq (t); __real__ x -= t; sinix *= exp_t; cosix *= exp_t; if (__real__ x > t) { __real__ x -= t; sinix *= exp_t; cosix *= exp_t; } } if (__real__ x > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = FLT128_MAX * cosix; __imag__ retval = FLT128_MAX * sinix; } else { __float128 exp_val = expq (__real__ x); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } } else { /* If the imaginary part is +-inf or NaN and the real part is not +-inf the result is NaN + iNaN. */ __real__ retval = nanq (""); __imag__ retval = nanq (""); #ifdef HAVE_FENV_H feraiseexcept (FE_INVALID); #endif } } else if (__builtin_expect (rcls == QUADFP_INFINITE, 1)) { /* Real part is infinite. */ if (__builtin_expect (icls >= QUADFP_ZERO, 1)) { /* Imaginary part is finite. */ __float128 value = signbitq (__real__ x) ? 0.0Q : HUGE_VALQ; if (icls == QUADFP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = value; __imag__ retval = __imag__ x; } else { __float128 sinix, cosix; if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1)) { sincosq (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0Q; } __real__ retval = copysignq (value, cosix); __imag__ retval = copysignq (value, sinix); } } else if (signbitq (__real__ x) == 0) { __real__ retval = HUGE_VALQ; __imag__ retval = nanq (""); #ifdef HAVE_FENV_H if (icls == QUADFP_INFINITE) feraiseexcept (FE_INVALID); #endif } else { __real__ retval = 0.0Q; __imag__ retval = copysignq (0.0Q, __imag__ x); } } else { /* If the real part is NaN the result is NaN + iNaN. */ __real__ retval = nanq (""); __imag__ retval = nanq (""); #ifdef HAVE_FENV_H if (rcls != QUADFP_NAN || icls != QUADFP_NAN) feraiseexcept (FE_INVALID); #endif } return retval; }