// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package protopprof import ( "internal/pprof/profile" "math" "runtime" "time" ) // EncodeMemProfile converts MemProfileRecords to a Profile. func EncodeMemProfile(mr []runtime.MemProfileRecord, rate int64, t time.Time) *profile.Profile { p := &profile.Profile{ Period: rate, PeriodType: &profile.ValueType{Type: "space", Unit: "bytes"}, SampleType: []*profile.ValueType{ {Type: "alloc_objects", Unit: "count"}, {Type: "alloc_space", Unit: "bytes"}, {Type: "inuse_objects", Unit: "count"}, {Type: "inuse_space", Unit: "bytes"}, }, TimeNanos: int64(t.UnixNano()), } locs := make(map[uintptr]*profile.Location) for _, r := range mr { stack := r.Stack() sloc := make([]*profile.Location, len(stack)) for i, addr := range stack { loc := locs[addr] if loc == nil { loc = &profile.Location{ ID: uint64(len(p.Location) + 1), Address: uint64(addr), } locs[addr] = loc p.Location = append(p.Location, loc) } sloc[i] = loc } ao, ab := scaleHeapSample(r.AllocObjects, r.AllocBytes, rate) uo, ub := scaleHeapSample(r.InUseObjects(), r.InUseBytes(), rate) p.Sample = append(p.Sample, &profile.Sample{ Value: []int64{ao, ab, uo, ub}, Location: sloc, }) } if runtime.GOOS == "linux" { addMappings(p) } return p } // scaleHeapSample adjusts the data from a heap Sample to // account for its probability of appearing in the collected // data. heap profiles are a sampling of the memory allocations // requests in a program. We estimate the unsampled value by dividing // each collected sample by its probability of appearing in the // profile. heap profiles rely on a poisson process to determine // which samples to collect, based on the desired average collection // rate R. The probability of a sample of size S to appear in that // profile is 1-exp(-S/R). func scaleHeapSample(count, size, rate int64) (int64, int64) { if count == 0 || size == 0 { return 0, 0 } if rate <= 1 { // if rate==1 all samples were collected so no adjustment is needed. // if rate<1 treat as unknown and skip scaling. return count, size } avgSize := float64(size) / float64(count) scale := 1 / (1 - math.Exp(-avgSize/float64(rate))) return int64(float64(count) * scale), int64(float64(size) * scale) }