// std::__detail definitions -*- C++ -*- // Copyright (C) 2007-2020 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . #if __cplusplus < 201103L # error "hashtable_c++0x.cc must be compiled with -std=gnu++0x" #endif #include #include #include #include #include namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION #include "../shared/hashtable-aux.cc" namespace __detail { // Return a prime no smaller than n. std::size_t _Prime_rehash_policy::_M_next_bkt(std::size_t __n) const { // Optimize lookups involving the first elements of __prime_list. // (useful to speed-up, eg, constructors) static const unsigned char __fast_bkt[] = { 2, 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13 }; if (__n < sizeof(__fast_bkt)) { if (__n == 0) // Special case on container 1st initialization with 0 bucket count // hint. We keep _M_next_resize to 0 to make sure that next time we // want to add an element allocation will take place. return 1; _M_next_resize = __builtin_floorl(__fast_bkt[__n] * (long double)_M_max_load_factor); return __fast_bkt[__n]; } // Number of primes (without sentinel). constexpr auto __n_primes = sizeof(__prime_list) / sizeof(unsigned long) - 1; // Don't include the last prime in the search, so that anything // higher than the second-to-last prime returns a past-the-end // iterator that can be dereferenced to get the last prime. constexpr auto __last_prime = __prime_list + __n_primes - 1; const unsigned long* __next_bkt = std::lower_bound(__prime_list + 6, __last_prime, __n); if (__next_bkt == __last_prime) // Set next resize to the max value so that we never try to rehash again // as we already reach the biggest possible bucket number. // Note that it might result in max_load_factor not being respected. _M_next_resize = numeric_limits::max(); else _M_next_resize = __builtin_floorl(*__next_bkt * (long double)_M_max_load_factor); return *__next_bkt; } // Finds the smallest prime p such that alpha p > __n_elt + __n_ins. // If p > __n_bkt, return make_pair(true, p); otherwise return // make_pair(false, 0). In principle this isn't very different from // _M_bkt_for_elements. // The only tricky part is that we're caching the element count at // which we need to rehash, so we don't have to do a floating-point // multiply for every insertion. std::pair _Prime_rehash_policy:: _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, std::size_t __n_ins) const { if (__n_elt + __n_ins > _M_next_resize) { // If _M_next_resize is 0 it means that we have nothing allocated so // far and that we start inserting elements. In this case we start // with an initial bucket size of 11. long double __min_bkts = std::max(__n_elt + __n_ins, _M_next_resize ? 0 : 11) / (long double)_M_max_load_factor; if (__min_bkts >= __n_bkt) return { true, _M_next_bkt(std::max(__builtin_floorl(__min_bkts) + 1, __n_bkt * _S_growth_factor)) }; _M_next_resize = __builtin_floorl(__n_bkt * (long double)_M_max_load_factor); return { false, 0 }; } else return { false, 0 }; } } // namespace __detail _GLIBCXX_END_NAMESPACE_VERSION } // namespace std