summaryrefslogtreecommitdiff
path: root/lib/xray/xray_segmented_array.h
blob: 11dd794fa5207c98f5ff04e084bcd44d3b5f9d80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
//===-- xray_segmented_array.h ---------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Defines the implementation of a segmented array, with fixed-size segments
// backing the segments.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_SEGMENTED_ARRAY_H
#define XRAY_SEGMENTED_ARRAY_H

#include "sanitizer_common/sanitizer_allocator.h"
#include "xray_allocator.h"
#include "xray_utils.h"
#include <cassert>
#include <type_traits>
#include <utility>

namespace __xray {

/// The Array type provides an interface similar to std::vector<...> but does
/// not shrink in size. Once constructed, elements can be appended but cannot be
/// removed. The implementation is heavily dependent on the contract provided by
/// the Allocator type, in that all memory will be released when the Allocator
/// is destroyed. When an Array is destroyed, it will destroy elements in the
/// backing store but will not free the memory.
template <class T> class Array {
  struct SegmentBase {
    SegmentBase *Prev;
    SegmentBase *Next;
  };

  // We want each segment of the array to be cache-line aligned, and elements of
  // the array be offset from the beginning of the segment.
  struct Segment : SegmentBase {
    char Data[1];
  };

public:
  // Each segment of the array will be laid out with the following assumptions:
  //
  //   - Each segment will be on a cache-line address boundary (kCacheLineSize
  //     aligned).
  //
  //   - The elements will be accessed through an aligned pointer, dependent on
  //     the alignment of T.
  //
  //   - Each element is at least two-pointers worth from the beginning of the
  //     Segment, aligned properly, and the rest of the elements are accessed
  //     through appropriate alignment.
  //
  // We then compute the size of the segment to follow this logic:
  //
  //   - Compute the number of elements that can fit within
  //     kCacheLineSize-multiple segments, minus the size of two pointers.
  //
  //   - Request cacheline-multiple sized elements from the allocator.
  static constexpr size_t AlignedElementStorageSize =
      sizeof(typename std::aligned_storage<sizeof(T), alignof(T)>::type);

  static constexpr size_t SegmentSize =
      nearest_boundary(sizeof(Segment) + next_pow2(sizeof(T)), kCacheLineSize);

  using AllocatorType = Allocator<SegmentSize>;

  static constexpr size_t ElementsPerSegment =
      (SegmentSize - sizeof(Segment)) / next_pow2(sizeof(T));

  static_assert(ElementsPerSegment > 0,
                "Must have at least 1 element per segment.");

  static SegmentBase SentinelSegment;

private:
  AllocatorType *Alloc;
  SegmentBase *Head = &SentinelSegment;
  SegmentBase *Tail = &SentinelSegment;
  size_t Size = 0;

  // Here we keep track of segments in the freelist, to allow us to re-use
  // segments when elements are trimmed off the end.
  SegmentBase *Freelist = &SentinelSegment;

  Segment *NewSegment() {
    // We need to handle the case in which enough elements have been trimmed to
    // allow us to re-use segments we've allocated before. For this we look into
    // the Freelist, to see whether we need to actually allocate new blocks or
    // just re-use blocks we've already seen before.
    if (Freelist != &SentinelSegment) {
      auto *FreeSegment = Freelist;
      Freelist = FreeSegment->Next;
      FreeSegment->Next = &SentinelSegment;
      Freelist->Prev = &SentinelSegment;
      return static_cast<Segment *>(FreeSegment);
    }

    auto SegmentBlock = Alloc->Allocate();
    if (SegmentBlock.Data == nullptr)
      return nullptr;

    // Placement-new the Segment element at the beginning of the SegmentBlock.
    auto S = reinterpret_cast<Segment *>(SegmentBlock.Data);
    new (S) SegmentBase{&SentinelSegment, &SentinelSegment};
    return S;
  }

  Segment *InitHeadAndTail() {
    DCHECK_EQ(Head, &SentinelSegment);
    DCHECK_EQ(Tail, &SentinelSegment);
    auto Segment = NewSegment();
    if (Segment == nullptr)
      return nullptr;
    DCHECK_EQ(Segment->Next, &SentinelSegment);
    DCHECK_EQ(Segment->Prev, &SentinelSegment);
    Head = Tail = static_cast<SegmentBase *>(Segment);
    return Segment;
  }

  Segment *AppendNewSegment() {
    auto S = NewSegment();
    if (S == nullptr)
      return nullptr;
    DCHECK_NE(Tail, &SentinelSegment);
    DCHECK_EQ(Tail->Next, &SentinelSegment);
    DCHECK_EQ(S->Prev, &SentinelSegment);
    DCHECK_EQ(S->Next, &SentinelSegment);
    Tail->Next = S;
    S->Prev = Tail;
    Tail = S;
    return static_cast<Segment *>(Tail);
  }

  // This Iterator models a BidirectionalIterator.
  template <class U> class Iterator {
    SegmentBase *S = &SentinelSegment;
    size_t Offset = 0;
    size_t Size = 0;

  public:
    Iterator(SegmentBase *IS, size_t Off, size_t S)
        : S(IS), Offset(Off), Size(S) {}
    Iterator(const Iterator &) noexcept = default;
    Iterator() noexcept = default;
    Iterator(Iterator &&) noexcept = default;
    Iterator &operator=(const Iterator &) = default;
    Iterator &operator=(Iterator &&) = default;
    ~Iterator() = default;

    Iterator &operator++() {
      if (++Offset % ElementsPerSegment || Offset == Size)
        return *this;

      // At this point, we know that Offset % N == 0, so we must advance the
      // segment pointer.
      DCHECK_EQ(Offset % ElementsPerSegment, 0);
      DCHECK_NE(Offset, Size);
      DCHECK_NE(S, &SentinelSegment);
      DCHECK_NE(S->Next, &SentinelSegment);
      S = S->Next;
      DCHECK_NE(S, &SentinelSegment);
      return *this;
    }

    Iterator &operator--() {
      DCHECK_NE(S, &SentinelSegment);
      DCHECK_GT(Offset, 0);

      auto PreviousOffset = Offset--;
      if (PreviousOffset != Size && PreviousOffset % ElementsPerSegment == 0) {
        DCHECK_NE(S->Prev, &SentinelSegment);
        S = S->Prev;
      }

      return *this;
    }

    Iterator operator++(int) {
      Iterator Copy(*this);
      ++(*this);
      return Copy;
    }

    Iterator operator--(int) {
      Iterator Copy(*this);
      --(*this);
      return Copy;
    }

    template <class V, class W>
    friend bool operator==(const Iterator<V> &L, const Iterator<W> &R) {
      return L.S == R.S && L.Offset == R.Offset;
    }

    template <class V, class W>
    friend bool operator!=(const Iterator<V> &L, const Iterator<W> &R) {
      return !(L == R);
    }

    U &operator*() const {
      DCHECK_NE(S, &SentinelSegment);
      auto RelOff = Offset % ElementsPerSegment;

      // We need to compute the character-aligned pointer, offset from the
      // segment's Data location to get the element in the position of Offset.
      auto Base = static_cast<Segment *>(S)->Data;
      auto AlignedOffset = Base + (RelOff * AlignedElementStorageSize);
      return *reinterpret_cast<U *>(AlignedOffset);
    }

    U *operator->() const { return &(**this); }
  };

public:
  explicit Array(AllocatorType &A) : Alloc(&A) {}

  Array(const Array &) = delete;
  Array(Array &&O) NOEXCEPT : Alloc(O.Alloc),
                              Head(O.Head),
                              Tail(O.Tail),
                              Size(O.Size) {
    O.Head = &SentinelSegment;
    O.Tail = &SentinelSegment;
    O.Size = 0;
  }

  bool empty() const { return Size == 0; }

  AllocatorType &allocator() const {
    DCHECK_NE(Alloc, nullptr);
    return *Alloc;
  }

  size_t size() const { return Size; }

  T *Append(const T &E) {
    if (UNLIKELY(Head == &SentinelSegment))
      if (InitHeadAndTail() == nullptr)
        return nullptr;

    auto Offset = Size % ElementsPerSegment;
    if (UNLIKELY(Size != 0 && Offset == 0))
      if (AppendNewSegment() == nullptr)
        return nullptr;

    auto Base = static_cast<Segment *>(Tail)->Data;
    auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
    auto Position = reinterpret_cast<T *>(AlignedOffset);
    *Position = E;
    ++Size;
    return Position;
  }

  template <class... Args> T *AppendEmplace(Args &&... args) {
    if (UNLIKELY(Head == &SentinelSegment))
      if (InitHeadAndTail() == nullptr)
        return nullptr;

    auto Offset = Size % ElementsPerSegment;
    auto *LatestSegment = Tail;
    if (UNLIKELY(Size != 0 && Offset == 0)) {
      LatestSegment = AppendNewSegment();
      if (LatestSegment == nullptr)
        return nullptr;
    }

    DCHECK_NE(Tail, &SentinelSegment);
    auto Base = static_cast<Segment *>(LatestSegment)->Data;
    auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
    auto Position = reinterpret_cast<T *>(AlignedOffset);

    // In-place construct at Position.
    new (Position) T{std::forward<Args>(args)...};
    ++Size;
    return reinterpret_cast<T *>(Position);
  }

  T &operator[](size_t Offset) const {
    DCHECK_LE(Offset, Size);
    // We need to traverse the array enough times to find the element at Offset.
    auto S = Head;
    while (Offset >= ElementsPerSegment) {
      S = S->Next;
      Offset -= ElementsPerSegment;
      DCHECK_NE(S, &SentinelSegment);
    }
    auto Base = static_cast<Segment *>(S)->Data;
    auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
    auto Position = reinterpret_cast<T *>(AlignedOffset);
    return *reinterpret_cast<T *>(Position);
  }

  T &front() const {
    DCHECK_NE(Head, &SentinelSegment);
    DCHECK_NE(Size, 0u);
    return *begin();
  }

  T &back() const {
    DCHECK_NE(Tail, &SentinelSegment);
    DCHECK_NE(Size, 0u);
    auto It = end();
    --It;
    return *It;
  }

  template <class Predicate> T *find_element(Predicate P) const {
    if (empty())
      return nullptr;

    auto E = end();
    for (auto I = begin(); I != E; ++I)
      if (P(*I))
        return &(*I);

    return nullptr;
  }

  /// Remove N Elements from the end. This leaves the blocks behind, and not
  /// require allocation of new blocks for new elements added after trimming.
  void trim(size_t Elements) {
    DCHECK_LE(Elements, Size);
    DCHECK_GT(Size, 0);
    auto OldSize = Size;
    Size -= Elements;

    DCHECK_NE(Head, &SentinelSegment);
    DCHECK_NE(Tail, &SentinelSegment);

    for (auto SegmentsToTrim = (nearest_boundary(OldSize, ElementsPerSegment) -
                                nearest_boundary(Size, ElementsPerSegment)) /
                               ElementsPerSegment;
         SegmentsToTrim > 0; --SegmentsToTrim) {
      DCHECK_NE(Head, &SentinelSegment);
      DCHECK_NE(Tail, &SentinelSegment);
      // Put the tail into the Freelist.
      auto *FreeSegment = Tail;
      Tail = Tail->Prev;
      if (Tail == &SentinelSegment)
        Head = Tail;
      else
        Tail->Next = &SentinelSegment;

      DCHECK_EQ(Tail->Next, &SentinelSegment);
      FreeSegment->Next = Freelist;
      FreeSegment->Prev = &SentinelSegment;
      if (Freelist != &SentinelSegment)
        Freelist->Prev = FreeSegment;
      Freelist = FreeSegment;
    }
  }

  // Provide iterators.
  Iterator<T> begin() const { return Iterator<T>(Head, 0, Size); }
  Iterator<T> end() const { return Iterator<T>(Tail, Size, Size); }
  Iterator<const T> cbegin() const { return Iterator<const T>(Head, 0, Size); }
  Iterator<const T> cend() const { return Iterator<const T>(Tail, Size, Size); }
};

// We need to have this storage definition out-of-line so that the compiler can
// ensure that storage for the SentinelSegment is defined and has a single
// address.
template <class T>
typename Array<T>::SegmentBase Array<T>::SentinelSegment{
    &Array<T>::SentinelSegment, &Array<T>::SentinelSegment};

} // namespace __xray

#endif // XRAY_SEGMENTED_ARRAY_H