summaryrefslogtreecommitdiff
path: root/lib/xray/xray_profile_collector.cc
blob: 9d057863e9727a36fb527957d5c2310c501f001f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//===-- xray_profile_collector.cc ------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This implements the interface for the profileCollectorService.
//
//===----------------------------------------------------------------------===//
#include "xray_profile_collector.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_vector.h"
#include "xray_profiling_flags.h"
#include <pthread.h>
#include <memory>
#include <utility>

namespace __xray {
namespace profileCollectorService {

namespace {

SpinMutex GlobalMutex;
struct ThreadTrie {
  tid_t TId;
  FunctionCallTrie *Trie;
};
Vector<ThreadTrie> ThreadTries;

struct ProfileBuffer {
  void *Data;
  size_t Size;
};
Vector<ProfileBuffer> ProfileBuffers;

struct BlockHeader {
  u32 BlockSize;
  u32 BlockNum;
  u64 ThreadId;
};

FunctionCallTrie::Allocators *GlobalAllocators = nullptr;

} // namespace

void post(const FunctionCallTrie &T, tid_t TId) {
  static pthread_once_t Once = PTHREAD_ONCE_INIT;
  pthread_once(&Once, +[] {
    SpinMutexLock Lock(&GlobalMutex);
    GlobalAllocators = reinterpret_cast<FunctionCallTrie::Allocators *>(
        InternalAlloc(sizeof(FunctionCallTrie::Allocators)));
    new (GlobalAllocators) FunctionCallTrie::Allocators();
    *GlobalAllocators = FunctionCallTrie::InitAllocators();
  });
  DCHECK_NE(GlobalAllocators, nullptr);

  ThreadTrie *Item = nullptr;
  {
    SpinMutexLock Lock(&GlobalMutex);
    if (GlobalAllocators == nullptr)
      return;

    Item = ThreadTries.PushBack();
    Item->TId = TId;

    // Here we're using the internal allocator instead of the managed allocator
    // because:
    //
    // 1) We're not using the segmented array data structure to host
    //    FunctionCallTrie objects. We're using a Vector (from sanitizer_common)
    //    which works like a std::vector<...> keeping elements contiguous in
    //    memory. The segmented array data structure assumes that elements are
    //    trivially destructible, where FunctionCallTrie isn't.
    //
    // 2) Using a managed allocator means we need to manage that separately,
    //    which complicates the nature of this code. To get around that, we're
    //    using the internal allocator instead, which has its own global state
    //    and is decoupled from the lifetime management required by the managed
    //    allocator we have in XRay.
    //
    Item->Trie = reinterpret_cast<FunctionCallTrie *>(
        InternalAlloc(sizeof(FunctionCallTrie)));
    DCHECK_NE(Item->Trie, nullptr);
    new (Item->Trie) FunctionCallTrie(*GlobalAllocators);
  }
  DCHECK_NE(Item, nullptr);

  T.deepCopyInto(*Item->Trie);
}

// A PathArray represents the function id's representing a stack trace. In this
// context a path is almost always represented from the leaf function in a call
// stack to a root of the call trie.
using PathArray = Array<int32_t>;

struct ProfileRecord {
  using PathAllocator = typename PathArray::AllocatorType;

  // The Path in this record is the function id's from the leaf to the root of
  // the function call stack as represented from a FunctionCallTrie.
  PathArray *Path = nullptr;
  const FunctionCallTrie::Node *Node = nullptr;

  // Constructor for in-place construction.
  ProfileRecord(PathAllocator &A, const FunctionCallTrie::Node *N)
      : Path([&] {
          auto P =
              reinterpret_cast<PathArray *>(InternalAlloc(sizeof(PathArray)));
          new (P) PathArray(A);
          return P;
        }()),
        Node(N) {}
};

namespace {

using ProfileRecordArray = Array<ProfileRecord>;

// Walk a depth-first traversal of each root of the FunctionCallTrie to generate
// the path(s) and the data associated with the path.
static void populateRecords(ProfileRecordArray &PRs,
                            ProfileRecord::PathAllocator &PA,
                            const FunctionCallTrie &Trie) {
  using StackArray = Array<const FunctionCallTrie::Node *>;
  using StackAllocator = typename StackArray::AllocatorType;
  StackAllocator StackAlloc(profilingFlags()->stack_allocator_max, 0);
  StackArray DFSStack(StackAlloc);
  for (const auto R : Trie.getRoots()) {
    DFSStack.Append(R);
    while (!DFSStack.empty()) {
      auto Node = DFSStack.back();
      DFSStack.trim(1);
      auto Record = PRs.AppendEmplace(PA, Node);
      DCHECK_NE(Record, nullptr);

      // Traverse the Node's parents and as we're doing so, get the FIds in
      // the order they appear.
      for (auto N = Node; N != nullptr; N = N->Parent)
        Record->Path->Append(N->FId);
      DCHECK(!Record->Path->empty());

      for (const auto C : Node->Callees)
        DFSStack.Append(C.NodePtr);
    }
  }
}

static void serializeRecords(ProfileBuffer *Buffer, const BlockHeader &Header,
                             const ProfileRecordArray &ProfileRecords) {
  auto NextPtr = static_cast<char *>(
                     internal_memcpy(Buffer->Data, &Header, sizeof(Header))) +
                 sizeof(Header);
  for (const auto &Record : ProfileRecords) {
    // List of IDs follow:
    for (const auto FId : *Record.Path)
      NextPtr =
          static_cast<char *>(internal_memcpy(NextPtr, &FId, sizeof(FId))) +
          sizeof(FId);

    // Add the sentinel here.
    constexpr int32_t SentinelFId = 0;
    NextPtr = static_cast<char *>(
                  internal_memset(NextPtr, SentinelFId, sizeof(SentinelFId))) +
              sizeof(SentinelFId);

    // Add the node data here.
    NextPtr =
        static_cast<char *>(internal_memcpy(NextPtr, &Record.Node->CallCount,
                                            sizeof(Record.Node->CallCount))) +
        sizeof(Record.Node->CallCount);
    NextPtr = static_cast<char *>(
                  internal_memcpy(NextPtr, &Record.Node->CumulativeLocalTime,
                                  sizeof(Record.Node->CumulativeLocalTime))) +
              sizeof(Record.Node->CumulativeLocalTime);
  }

  DCHECK_EQ(NextPtr - static_cast<char *>(Buffer->Data), Buffer->Size);
}

} // namespace

void serialize() {
  SpinMutexLock Lock(&GlobalMutex);

  // Clear out the global ProfileBuffers.
  for (uptr I = 0; I < ProfileBuffers.Size(); ++I)
    InternalFree(ProfileBuffers[I].Data);
  ProfileBuffers.Reset();

  if (ThreadTries.Size() == 0)
    return;

  // Then repopulate the global ProfileBuffers.
  for (u32 I = 0; I < ThreadTries.Size(); ++I) {
    using ProfileRecordAllocator = typename ProfileRecordArray::AllocatorType;
    ProfileRecordAllocator PRAlloc(profilingFlags()->global_allocator_max, 0);
    ProfileRecord::PathAllocator PathAlloc(
        profilingFlags()->global_allocator_max, 0);
    ProfileRecordArray ProfileRecords(PRAlloc);

    // First, we want to compute the amount of space we're going to need. We'll
    // use a local allocator and an __xray::Array<...> to store the intermediary
    // data, then compute the size as we're going along. Then we'll allocate the
    // contiguous space to contain the thread buffer data.
    const auto &Trie = *ThreadTries[I].Trie;
    if (Trie.getRoots().empty())
      continue;
    populateRecords(ProfileRecords, PathAlloc, Trie);
    DCHECK(!Trie.getRoots().empty());
    DCHECK(!ProfileRecords.empty());

    // Go through each record, to compute the sizes.
    //
    // header size = block size (4 bytes)
    //   + block number (4 bytes)
    //   + thread id (8 bytes)
    // record size = path ids (4 bytes * number of ids + sentinel 4 bytes)
    //   + call count (8 bytes)
    //   + local time (8 bytes)
    //   + end of record (8 bytes)
    u32 CumulativeSizes = 0;
    for (const auto &Record : ProfileRecords)
      CumulativeSizes += 20 + (4 * Record.Path->size());

    BlockHeader Header{16 + CumulativeSizes, I, ThreadTries[I].TId};
    auto Buffer = ProfileBuffers.PushBack();
    Buffer->Size = sizeof(Header) + CumulativeSizes;
    Buffer->Data = InternalAlloc(Buffer->Size, nullptr, 64);
    DCHECK_NE(Buffer->Data, nullptr);
    serializeRecords(Buffer, Header, ProfileRecords);

    // Now clean up the ProfileRecords array, one at a time.
    for (auto &Record : ProfileRecords) {
      Record.Path->~PathArray();
      InternalFree(Record.Path);
    }
  }
}

void reset() {
  SpinMutexLock Lock(&GlobalMutex);
  // Clear out the profile buffers that have been serialized.
  for (uptr I = 0; I < ProfileBuffers.Size(); ++I)
    InternalFree(ProfileBuffers[I].Data);
  ProfileBuffers.Reset();

  // Clear out the function call tries per thread.
  for (uptr I = 0; I < ThreadTries.Size(); ++I) {
    auto &T = ThreadTries[I];
    T.Trie->~FunctionCallTrie();
    InternalFree(T.Trie);
  }
  ThreadTries.Reset();

  // Reset the global allocators.
  if (GlobalAllocators != nullptr) {
    GlobalAllocators->~Allocators();
    InternalFree(GlobalAllocators);
    GlobalAllocators = nullptr;
  }
  GlobalAllocators = reinterpret_cast<FunctionCallTrie::Allocators *>(
      InternalAlloc(sizeof(FunctionCallTrie::Allocators)));
  new (GlobalAllocators) FunctionCallTrie::Allocators();
  *GlobalAllocators = FunctionCallTrie::InitAllocators();
}

XRayBuffer nextBuffer(XRayBuffer B) {
  SpinMutexLock Lock(&GlobalMutex);
  if (B.Data == nullptr && ProfileBuffers.Size())
    return {ProfileBuffers[0].Data, ProfileBuffers[0].Size};

  BlockHeader Header;
  internal_memcpy(&Header, B.Data, sizeof(BlockHeader));
  auto NextBlock = Header.BlockNum + 1;
  if (NextBlock < ProfileBuffers.Size())
    return {ProfileBuffers[NextBlock].Data, ProfileBuffers[NextBlock].Size};
  return {nullptr, 0};
}

} // namespace profileCollectorService
} // namespace __xray