summaryrefslogtreecommitdiff
path: root/lib/xray/xray_fdr_logging_impl.h
blob: 756bbe347348a38526bc839b0225e1b7046fb88e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
//===-- xray_fdr_logging_impl.h ---------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Here we implement the thread local state management and record i/o for Flight
// Data Recorder mode for XRay, where we use compact structures to store records
// in memory as well as when writing out the data to files.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_XRAY_FDR_LOGGING_IMPL_H
#define XRAY_XRAY_FDR_LOGGING_IMPL_H

#include <cassert>
#include <cstdint>
#include <cstring>
#include <limits>
#include <memory>
#include <string>
#include <sys/syscall.h>
#include <time.h>
#include <unistd.h>

#include "sanitizer_common/sanitizer_common.h"
#include "xray/xray_log_interface.h"
#include "xray_buffer_queue.h"
#include "xray_defs.h"
#include "xray_fdr_log_records.h"
#include "xray_flags.h"
#include "xray_tsc.h"

namespace __xray {

/// We expose some of the state transitions when FDR logging mode is operating
/// such that we can simulate a series of log events that may occur without
/// and test with determinism without worrying about the real CPU time.
///
/// Because the code uses thread_local allocation extensively as part of its
/// design, callers that wish to test events occuring on different threads
/// will actually have to run them on different threads.
///
/// This also means that it is possible to break invariants maintained by
/// cooperation with xray_fdr_logging class, so be careful and think twice.
namespace __xray_fdr_internal {

/// Writes the new buffer record and wallclock time that begin a buffer for a
/// thread to MemPtr and increments MemPtr. Bypasses the thread local state
/// machine and writes directly to memory without checks.
static void writeNewBufferPreamble(pid_t Tid, timespec TS, char *&MemPtr);

/// Write a metadata record to switch to a new CPU to MemPtr and increments
/// MemPtr. Bypasses the thread local state machine and writes directly to
/// memory without checks.
static void writeNewCPUIdMetadata(uint16_t CPU, uint64_t TSC, char *&MemPtr);

/// Writes an EOB metadata record to MemPtr and increments MemPtr. Bypasses the
/// thread local state machine and writes directly to memory without checks.
static void writeEOBMetadata(char *&MemPtr);

/// Writes a TSC Wrap metadata record to MemPtr and increments MemPtr. Bypasses
/// the thread local state machine and directly writes to memory without checks.
static void writeTSCWrapMetadata(uint64_t TSC, char *&MemPtr);

/// Writes a Function Record to MemPtr and increments MemPtr. Bypasses the
/// thread local state machine and writes the function record directly to
/// memory.
static void writeFunctionRecord(int FuncId, uint32_t TSCDelta,
                                XRayEntryType EntryType, char *&MemPtr);

/// Sets up a new buffer in thread_local storage and writes a preamble. The
/// wall_clock_reader function is used to populate the WallTimeRecord entry.
static void setupNewBuffer(int (*wall_clock_reader)(clockid_t,
                                                    struct timespec *));

/// Called to record CPU time for a new CPU within the current thread.
static void writeNewCPUIdMetadata(uint16_t CPU, uint64_t TSC);

/// Called to close the buffer when the thread exhausts the buffer or when the
/// thread exits (via a thread local variable destructor).
static void writeEOBMetadata();

/// TSC Wrap records are written when a TSC delta encoding scheme overflows.
static void writeTSCWrapMetadata(uint64_t TSC);

/// Here's where the meat of the processing happens. The writer captures
/// function entry, exit and tail exit points with a time and will create
/// TSCWrap, NewCPUId and Function records as necessary. The writer might
/// walk backward through its buffer and erase trivial functions to avoid
/// polluting the log and may use the buffer queue to obtain or release a
/// buffer.
static void processFunctionHook(int32_t FuncId, XRayEntryType Entry,
                                uint64_t TSC, unsigned char CPU,
                                int (*wall_clock_reader)(clockid_t,
                                                         struct timespec *),
                                __sanitizer::atomic_sint32_t &LoggingStatus,
                                const std::shared_ptr<BufferQueue> &BQ);

//-----------------------------------------------------------------------------|
// The rest of the file is implementation.                                     |
//-----------------------------------------------------------------------------|
// Functions are implemented in the header for inlining since we don't want    |
// to grow the stack when we've hijacked the binary for logging.               |
//-----------------------------------------------------------------------------|

namespace {

thread_local BufferQueue::Buffer Buffer;
thread_local char *RecordPtr = nullptr;

// The number of FunctionEntry records immediately preceding RecordPtr.
thread_local uint8_t NumConsecutiveFnEnters = 0;

// The number of adjacent, consecutive pairs of FunctionEntry, Tail Exit
// records preceding RecordPtr.
thread_local uint8_t NumTailCalls = 0;

constexpr auto MetadataRecSize = sizeof(MetadataRecord);
constexpr auto FunctionRecSize = sizeof(FunctionRecord);

class ThreadExitBufferCleanup {
  std::weak_ptr<BufferQueue> Buffers;
  BufferQueue::Buffer &Buffer;

public:
  explicit ThreadExitBufferCleanup(std::weak_ptr<BufferQueue> BQ,
                                   BufferQueue::Buffer &Buffer)
      XRAY_NEVER_INSTRUMENT : Buffers(BQ),
                              Buffer(Buffer) {}

  ~ThreadExitBufferCleanup() noexcept XRAY_NEVER_INSTRUMENT {
    if (RecordPtr == nullptr)
      return;

    // We make sure that upon exit, a thread will write out the EOB
    // MetadataRecord in the thread-local log, and also release the buffer to
    // the queue.
    assert((RecordPtr + MetadataRecSize) - static_cast<char *>(Buffer.Buffer) >=
           static_cast<ptrdiff_t>(MetadataRecSize));
    if (auto BQ = Buffers.lock()) {
      writeEOBMetadata();
      auto EC = BQ->releaseBuffer(Buffer);
      if (EC != BufferQueue::ErrorCode::Ok)
        Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
               BufferQueue::getErrorString(EC));
      return;
    }
  }
};

class RecursionGuard {
  bool &Running;
  const bool Valid;

public:
  explicit RecursionGuard(bool &R) : Running(R), Valid(!R) {
    if (Valid)
      Running = true;
  }

  RecursionGuard(const RecursionGuard &) = delete;
  RecursionGuard(RecursionGuard &&) = delete;
  RecursionGuard &operator=(const RecursionGuard &) = delete;
  RecursionGuard &operator=(RecursionGuard &&) = delete;

  explicit operator bool() const { return Valid; }

  ~RecursionGuard() noexcept {
    if (Valid)
      Running = false;
  }
};

static inline bool loggingInitialized(
    const __sanitizer::atomic_sint32_t &LoggingStatus) XRAY_NEVER_INSTRUMENT {
  return __sanitizer::atomic_load(&LoggingStatus,
                                  __sanitizer::memory_order_acquire) ==
         XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}

} // namespace

static inline void writeNewBufferPreamble(pid_t Tid, timespec TS,
                                          char *&MemPtr) XRAY_NEVER_INSTRUMENT {
  static constexpr int InitRecordsCount = 2;
  std::aligned_storage<sizeof(MetadataRecord)>::type Records[InitRecordsCount];
  {
    // Write out a MetadataRecord to signify that this is the start of a new
    // buffer, associated with a particular thread, with a new CPU.  For the
    // data, we have 15 bytes to squeeze as much information as we can.  At this
    // point we only write down the following bytes:
    //   - Thread ID (pid_t, 4 bytes)
    auto &NewBuffer = *reinterpret_cast<MetadataRecord *>(&Records[0]);
    NewBuffer.Type = uint8_t(RecordType::Metadata);
    NewBuffer.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewBuffer);
    std::memcpy(&NewBuffer.Data, &Tid, sizeof(pid_t));
  }
  // Also write the WalltimeMarker record.
  {
    static_assert(sizeof(time_t) <= 8, "time_t needs to be at most 8 bytes");
    auto &WalltimeMarker = *reinterpret_cast<MetadataRecord *>(&Records[1]);
    WalltimeMarker.Type = uint8_t(RecordType::Metadata);
    WalltimeMarker.RecordKind =
        uint8_t(MetadataRecord::RecordKinds::WalltimeMarker);

    // We only really need microsecond precision here, and enforce across
    // platforms that we need 64-bit seconds and 32-bit microseconds encoded in
    // the Metadata record.
    int32_t Micros = TS.tv_nsec / 1000;
    int64_t Seconds = TS.tv_sec;
    std::memcpy(WalltimeMarker.Data, &Seconds, sizeof(Seconds));
    std::memcpy(WalltimeMarker.Data + sizeof(Seconds), &Micros, sizeof(Micros));
  }
  std::memcpy(MemPtr, Records, sizeof(MetadataRecord) * InitRecordsCount);
  MemPtr += sizeof(MetadataRecord) * InitRecordsCount;
  NumConsecutiveFnEnters = 0;
  NumTailCalls = 0;
}

static inline void setupNewBuffer(int (*wall_clock_reader)(clockid_t,
                                                           struct timespec *))
    XRAY_NEVER_INSTRUMENT {
  RecordPtr = static_cast<char *>(Buffer.Buffer);
  pid_t Tid = syscall(SYS_gettid);
  timespec TS{0, 0};
  // This is typically clock_gettime, but callers have injection ability.
  wall_clock_reader(CLOCK_MONOTONIC, &TS);
  writeNewBufferPreamble(Tid, TS, RecordPtr);
  NumConsecutiveFnEnters = 0;
  NumTailCalls = 0;
}

static inline void writeNewCPUIdMetadata(uint16_t CPU, uint64_t TSC,
                                         char *&MemPtr) XRAY_NEVER_INSTRUMENT {
  MetadataRecord NewCPUId;
  NewCPUId.Type = uint8_t(RecordType::Metadata);
  NewCPUId.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewCPUId);

  // The data for the New CPU will contain the following bytes:
  //   - CPU ID (uint16_t, 2 bytes)
  //   - Full TSC (uint64_t, 8 bytes)
  // Total = 10 bytes.
  std::memcpy(&NewCPUId.Data, &CPU, sizeof(CPU));
  std::memcpy(&NewCPUId.Data[sizeof(CPU)], &TSC, sizeof(TSC));
  std::memcpy(MemPtr, &NewCPUId, sizeof(MetadataRecord));
  MemPtr += sizeof(MetadataRecord);
  NumConsecutiveFnEnters = 0;
  NumTailCalls = 0;
}

static inline void writeNewCPUIdMetadata(uint16_t CPU,
                                         uint64_t TSC) XRAY_NEVER_INSTRUMENT {
  writeNewCPUIdMetadata(CPU, TSC, RecordPtr);
}

static inline void writeEOBMetadata(char *&MemPtr) XRAY_NEVER_INSTRUMENT {
  MetadataRecord EOBMeta;
  EOBMeta.Type = uint8_t(RecordType::Metadata);
  EOBMeta.RecordKind = uint8_t(MetadataRecord::RecordKinds::EndOfBuffer);
  // For now we don't write any bytes into the Data field.
  std::memcpy(MemPtr, &EOBMeta, sizeof(MetadataRecord));
  MemPtr += sizeof(MetadataRecord);
  NumConsecutiveFnEnters = 0;
  NumTailCalls = 0;
}

static inline void writeEOBMetadata() XRAY_NEVER_INSTRUMENT {
  writeEOBMetadata(RecordPtr);
}

static inline void writeTSCWrapMetadata(uint64_t TSC,
                                        char *&MemPtr) XRAY_NEVER_INSTRUMENT {
  MetadataRecord TSCWrap;
  TSCWrap.Type = uint8_t(RecordType::Metadata);
  TSCWrap.RecordKind = uint8_t(MetadataRecord::RecordKinds::TSCWrap);

  // The data for the TSCWrap record contains the following bytes:
  //   - Full TSC (uint64_t, 8 bytes)
  // Total = 8 bytes.
  std::memcpy(&TSCWrap.Data, &TSC, sizeof(TSC));
  std::memcpy(MemPtr, &TSCWrap, sizeof(MetadataRecord));
  MemPtr += sizeof(MetadataRecord);
  NumConsecutiveFnEnters = 0;
  NumTailCalls = 0;
}

static inline void writeTSCWrapMetadata(uint64_t TSC) XRAY_NEVER_INSTRUMENT {
  writeTSCWrapMetadata(TSC, RecordPtr);
}

static inline void writeFunctionRecord(int FuncId, uint32_t TSCDelta,
                                       XRayEntryType EntryType,
                                       char *&MemPtr) XRAY_NEVER_INSTRUMENT {
  std::aligned_storage<sizeof(FunctionRecord), alignof(FunctionRecord)>::type
      AlignedFuncRecordBuffer;
  auto &FuncRecord =
      *reinterpret_cast<FunctionRecord *>(&AlignedFuncRecordBuffer);
  FuncRecord.Type = uint8_t(RecordType::Function);
  // Only take 28 bits of the function id.
  FuncRecord.FuncId = FuncId & ~(0x0F << 28);
  FuncRecord.TSCDelta = TSCDelta;

  switch (EntryType) {
  case XRayEntryType::ENTRY:
    ++NumConsecutiveFnEnters;
    FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionEnter);
    break;
  case XRayEntryType::LOG_ARGS_ENTRY:
    // We should not rewind functions with logged args.
    NumConsecutiveFnEnters = 0;
    NumTailCalls = 0;
    FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionEnter);
    break;
  case XRayEntryType::EXIT:
    // If we've decided to log the function exit, we will never erase the log
    // before it.
    NumConsecutiveFnEnters = 0;
    NumTailCalls = 0;
    FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionExit);
    break;
  case XRayEntryType::TAIL:
    // If we just entered the function we're tail exiting from or erased every
    // invocation since then, this function entry tail pair is a candidate to
    // be erased when the child function exits.
    if (NumConsecutiveFnEnters > 0) {
      ++NumTailCalls;
      NumConsecutiveFnEnters = 0;
    } else {
      // We will never be able to erase this tail call since we have logged
      // something in between the function entry and tail exit.
      NumTailCalls = 0;
      NumConsecutiveFnEnters = 0;
    }
    FuncRecord.RecordKind =
        uint8_t(FunctionRecord::RecordKinds::FunctionTailExit);
    break;
  }

  std::memcpy(MemPtr, &AlignedFuncRecordBuffer, sizeof(FunctionRecord));
  MemPtr += sizeof(FunctionRecord);
}

static inline bool releaseThreadLocalBuffer(BufferQueue *BQ) {
  auto EC = BQ->releaseBuffer(Buffer);
  if (EC != BufferQueue::ErrorCode::Ok) {
    Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
           BufferQueue::getErrorString(EC));
    return false;
  }
  return true;
}

static inline void processFunctionHook(
    int32_t FuncId, XRayEntryType Entry, uint64_t TSC, unsigned char CPU,
    int (*wall_clock_reader)(clockid_t, struct timespec *),
    __sanitizer::atomic_sint32_t &LoggingStatus,
    const std::shared_ptr<BufferQueue> &BQ) XRAY_NEVER_INSTRUMENT {
  // Bail out right away if logging is not initialized yet.
  // We should take the opportunity to release the buffer though.
  auto Status = __sanitizer::atomic_load(&LoggingStatus,
                                         __sanitizer::memory_order_acquire);
  if (Status != XRayLogInitStatus::XRAY_LOG_INITIALIZED) {
    if (RecordPtr != nullptr &&
        (Status == XRayLogInitStatus::XRAY_LOG_FINALIZING ||
         Status == XRayLogInitStatus::XRAY_LOG_FINALIZED)) {
      writeEOBMetadata();
      if (!releaseThreadLocalBuffer(BQ.get()))
        return;
      RecordPtr = nullptr;
    }
    return;
  }

  // We use a thread_local variable to keep track of which CPUs we've already
  // run, and the TSC times for these CPUs. This allows us to stop repeating the
  // CPU field in the function records.
  //
  // We assume that we'll support only 65536 CPUs for x86_64.
  thread_local uint16_t CurrentCPU = std::numeric_limits<uint16_t>::max();
  thread_local uint64_t LastTSC = 0;
  thread_local uint64_t LastFunctionEntryTSC = 0;
  thread_local uint64_t NumberOfTicksThreshold = 0;

  // Make sure a thread that's ever called handleArg0 has a thread-local
  // live reference to the buffer queue for this particular instance of
  // FDRLogging, and that we're going to clean it up when the thread exits.
  thread_local auto LocalBQ = BQ;
  thread_local ThreadExitBufferCleanup Cleanup(LocalBQ, Buffer);

  // Prevent signal handler recursion, so in case we're already in a log writing
  // mode and the signal handler comes in (and is also instrumented) then we
  // don't want to be clobbering potentially partial writes already happening in
  // the thread. We use a simple thread_local latch to only allow one on-going
  // handleArg0 to happen at any given time.
  thread_local bool Running = false;
  RecursionGuard Guard{Running};
  if (!Guard) {
    assert(Running == true && "RecursionGuard is buggy!");
    return;
  }

  if (!loggingInitialized(LoggingStatus) || LocalBQ->finalizing()) {
    writeEOBMetadata();
    if (!releaseThreadLocalBuffer(BQ.get()))
      return;
    RecordPtr = nullptr;
  }

  if (Buffer.Buffer == nullptr) {
    auto EC = LocalBQ->getBuffer(Buffer);
    if (EC != BufferQueue::ErrorCode::Ok) {
      auto LS = __sanitizer::atomic_load(&LoggingStatus,
                                         __sanitizer::memory_order_acquire);
      if (LS != XRayLogInitStatus::XRAY_LOG_FINALIZING &&
          LS != XRayLogInitStatus::XRAY_LOG_FINALIZED)
        Report("Failed to acquire a buffer; error=%s\n",
               BufferQueue::getErrorString(EC));
      return;
    }

    uint64_t CycleFrequency = probeRequiredCPUFeatures()
                              ? getTSCFrequency()
                              : __xray::NanosecondsPerSecond;
    NumberOfTicksThreshold = CycleFrequency *
                             flags()->xray_fdr_log_func_duration_threshold_us /
                             1000000;
    setupNewBuffer(wall_clock_reader);
  }

  if (CurrentCPU == std::numeric_limits<uint16_t>::max()) {
    // This means this is the first CPU this thread has ever run on. We set the
    // current CPU and record this as the first TSC we've seen.
    CurrentCPU = CPU;
    writeNewCPUIdMetadata(CPU, TSC);
  }

  // Before we go setting up writing new function entries, we need to be really
  // careful about the pointer math we're doing. This means we need to ensure
  // that the record we are about to write is going to fit into the buffer,
  // without overflowing the buffer.
  //
  // To do this properly, we use the following assumptions:
  //
  //   - The least number of bytes we will ever write is 8
  //     (sizeof(FunctionRecord)) only if the delta between the previous entry
  //     and this entry is within 32 bits.
  //   - The most number of bytes we will ever write is 8 + 16 = 24. This is
  //     computed by:
  //
  //       sizeof(FunctionRecord) + sizeof(MetadataRecord)
  //
  //     These arise in the following cases:
  //
  //       1. When the delta between the TSC we get and the previous TSC for the
  //          same CPU is outside of the uint32_t range, we end up having to
  //          write a MetadataRecord to indicate a "tsc wrap" before the actual
  //          FunctionRecord.
  //       2. When we learn that we've moved CPUs, we need to write a
  //          MetadataRecord to indicate a "cpu change", and thus write out the
  //          current TSC for that CPU before writing out the actual
  //          FunctionRecord.
  //       3. When we learn about a new CPU ID, we need to write down a "new cpu
  //          id" MetadataRecord before writing out the actual FunctionRecord.
  //
  //   - An End-of-Buffer (EOB) MetadataRecord is 16 bytes.
  //
  // So the math we need to do is to determine whether writing 24 bytes past the
  // current pointer leaves us with enough bytes to write the EOB
  // MetadataRecord. If we don't have enough space after writing as much as 24
  // bytes in the end of the buffer, we need to write out the EOB, get a new
  // Buffer, set it up properly before doing any further writing.
  //
  char *BufferStart = static_cast<char *>(Buffer.Buffer);
  if ((RecordPtr + (MetadataRecSize + FunctionRecSize)) - BufferStart <
      static_cast<ptrdiff_t>(MetadataRecSize)) {
    writeEOBMetadata();
    if (!releaseThreadLocalBuffer(LocalBQ.get()))
      return;
    auto EC = LocalBQ->getBuffer(Buffer);
    if (EC != BufferQueue::ErrorCode::Ok) {
      Report("Failed to acquire a buffer; error=%s\n",
             BufferQueue::getErrorString(EC));
      return;
    }
    uint64_t CycleFrequency = getTSCFrequency();
    NumberOfTicksThreshold = CycleFrequency *
                             flags()->xray_fdr_log_func_duration_threshold_us /
                             1000000;
    setupNewBuffer(wall_clock_reader);
  }

  // By this point, we are now ready to write at most 24 bytes (one metadata
  // record and one function record).
  BufferStart = static_cast<char *>(Buffer.Buffer);
  assert((RecordPtr + (MetadataRecSize + FunctionRecSize)) - BufferStart >=
             static_cast<ptrdiff_t>(MetadataRecSize) &&
         "Misconfigured BufferQueue provided; Buffer size not large enough.");

  // Here we compute the TSC Delta. There are a few interesting situations we
  // need to account for:
  //
  //   - The thread has migrated to a different CPU. If this is the case, then
  //     we write down the following records:
  //
  //       1. A 'NewCPUId' Metadata record.
  //       2. A FunctionRecord with a 0 for the TSCDelta field.
  //
  //   - The TSC delta is greater than the 32 bits we can store in a
  //     FunctionRecord. In this case we write down the following records:
  //
  //       1. A 'TSCWrap' Metadata record.
  //       2. A FunctionRecord with a 0 for the TSCDelta field.
  //
  //   - The TSC delta is representable within the 32 bits we can store in a
  //     FunctionRecord. In this case we write down just a FunctionRecord with
  //     the correct TSC delta.
  //

  uint32_t RecordTSCDelta = 0;
  if (CPU != CurrentCPU) {
    // We've moved to a new CPU.
    writeNewCPUIdMetadata(CPU, TSC);
  } else {
    // If the delta is greater than the range for a uint32_t, then we write out
    // the TSC wrap metadata entry with the full TSC, and the TSC for the
    // function record be 0.
    auto Delta = TSC - LastTSC;
    if (Delta > (1ULL << 32) - 1)
      writeTSCWrapMetadata(TSC);
    else
      RecordTSCDelta = Delta;
  }

  LastTSC = TSC;
  CurrentCPU = CPU;
  using AlignedFuncStorage =
      std::aligned_storage<sizeof(FunctionRecord),
                           alignof(FunctionRecord)>::type;
  switch (Entry) {
  case XRayEntryType::ENTRY:
  case XRayEntryType::LOG_ARGS_ENTRY:
    // Update the thread local state for the next invocation.
    LastFunctionEntryTSC = TSC;
    break;
  case XRayEntryType::TAIL:
    break;
  case XRayEntryType::EXIT:
    // Break out and write the exit record if we can't erase any functions.
    if (NumConsecutiveFnEnters == 0 ||
        (TSC - LastFunctionEntryTSC) >= NumberOfTicksThreshold)
      break;
    // Otherwise we unwind functions that are too short to log by decrementing
    // our view ptr into the buffer. We can erase a Function Entry record and
    // neglect to log our EXIT. We have to make sure to update some state like
    // the LastTSC and count of consecutive FunctionEntry records.
    RecordPtr -= FunctionRecSize;
    AlignedFuncStorage AlignedFuncRecordBuffer;
    const auto &FuncRecord = *reinterpret_cast<FunctionRecord *>(
        std::memcpy(&AlignedFuncRecordBuffer, RecordPtr, FunctionRecSize));
    assert(FuncRecord.RecordKind ==
               uint8_t(FunctionRecord::RecordKinds::FunctionEnter) &&
           "Expected to find function entry recording when rewinding.");
    assert(FuncRecord.FuncId == (FuncId & ~(0x0F << 28)) &&
           "Expected matching function id when rewinding Exit");
    --NumConsecutiveFnEnters;
    LastTSC -= FuncRecord.TSCDelta;

    // We unwound one call. Update the state and return without writing a log.
    if (NumConsecutiveFnEnters != 0) {
      LastFunctionEntryTSC = LastFunctionEntryTSC - FuncRecord.TSCDelta;
      return;
    }

    // Otherwise we've rewound the stack of all function entries, we might be
    // able to rewind further by erasing tail call functions that are being
    // exited from via this exit.
    LastFunctionEntryTSC = 0;
    auto RewindingTSC = LastTSC;
    auto RewindingRecordPtr = RecordPtr - FunctionRecSize;
    while (NumTailCalls > 0) {
      AlignedFuncStorage TailExitRecordBuffer;
      // Rewind the TSC back over the TAIL EXIT record.
      const auto &ExpectedTailExit =
          *reinterpret_cast<FunctionRecord *>(std::memcpy(
              &TailExitRecordBuffer, RewindingRecordPtr, FunctionRecSize));

      assert(ExpectedTailExit.RecordKind ==
                 uint8_t(FunctionRecord::RecordKinds::FunctionTailExit) &&
             "Expected to find tail exit when rewinding.");
      RewindingRecordPtr -= FunctionRecSize;
      RewindingTSC -= ExpectedTailExit.TSCDelta;
      AlignedFuncStorage FunctionEntryBuffer;
      const auto &ExpectedFunctionEntry =
          *reinterpret_cast<FunctionRecord *>(std::memcpy(
              &FunctionEntryBuffer, RewindingRecordPtr, FunctionRecSize));
      assert(ExpectedFunctionEntry.RecordKind ==
                 uint8_t(FunctionRecord::RecordKinds::FunctionEnter) &&
             "Expected to find function entry when rewinding tail call.");
      assert(ExpectedFunctionEntry.FuncId == ExpectedTailExit.FuncId &&
             "Expected funcids to match when rewinding tail call.");

      if ((TSC - RewindingTSC) < NumberOfTicksThreshold) {
        // We can erase a tail exit pair that we're exiting through since
        // its duration is under threshold.
        --NumTailCalls;
        RewindingRecordPtr -= FunctionRecSize;
        RewindingTSC -= ExpectedFunctionEntry.TSCDelta;
        RecordPtr -= 2 * FunctionRecSize;
        LastTSC = RewindingTSC;
      } else {
        // This tail call exceeded the threshold duration. It will not
        // be erased.
        NumTailCalls = 0;
        return;
      }
    }
    return; // without writing log.
  }

  writeFunctionRecord(FuncId, RecordTSCDelta, Entry, RecordPtr);

  // If we've exhausted the buffer by this time, we then release the buffer to
  // make sure that other threads may start using this buffer.
  if ((RecordPtr + MetadataRecSize) - BufferStart == MetadataRecSize) {
    writeEOBMetadata();
    if (!releaseThreadLocalBuffer(LocalBQ.get()))
      return;
    RecordPtr = nullptr;
  }
}

} // namespace __xray_fdr_internal

} // namespace __xray
#endif // XRAY_XRAY_FDR_LOGGING_IMPL_H