summaryrefslogtreecommitdiff
path: root/lib/xray/xray_fdr_logging.cc
blob: 6db384519e66357ac305aa9b05c5686efc2e7b9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
//===-- xray_fdr_logging.cc ------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instruementation system.
//
// Here we implement the Flight Data Recorder mode for XRay, where we use
// compact structures to store records in memory as well as when writing out the
// data to files.
//
//===----------------------------------------------------------------------===//
#include "xray_fdr_logging.h"
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cstring>
#include <memory>
#include <sys/syscall.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
#include <unordered_map>

#include "sanitizer_common/sanitizer_common.h"
#include "xray/xray_interface.h"
#include "xray/xray_records.h"
#include "xray_buffer_queue.h"
#include "xray_defs.h"
#include "xray_flags.h"
#include "xray_tsc.h"
#include "xray_utils.h"

namespace __xray {

// Global BufferQueue.
std::shared_ptr<BufferQueue> BQ;

std::atomic<XRayLogInitStatus> LoggingStatus{
    XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};

std::atomic<XRayLogFlushStatus> LogFlushStatus{
    XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};

std::unique_ptr<FDRLoggingOptions> FDROptions;

XRayLogInitStatus fdrLoggingInit(std::size_t BufferSize, std::size_t BufferMax,
                                  void *Options,
                                  size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
  assert(OptionsSize == sizeof(FDRLoggingOptions));
  XRayLogInitStatus CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
  if (!LoggingStatus.compare_exchange_strong(
          CurrentStatus, XRayLogInitStatus::XRAY_LOG_INITIALIZING,
          std::memory_order_release, std::memory_order_relaxed))
    return CurrentStatus;

  FDROptions.reset(new FDRLoggingOptions());
  *FDROptions = *reinterpret_cast<FDRLoggingOptions *>(Options);
  if (FDROptions->ReportErrors)
    SetPrintfAndReportCallback(printToStdErr);

  bool Success = false;
  BQ = std::make_shared<BufferQueue>(BufferSize, BufferMax, Success);
  if (!Success) {
    Report("BufferQueue init failed.\n");
    return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
  }

  // Install the actual handleArg0 handler after initialising the buffers.
  __xray_set_handler(fdrLoggingHandleArg0);

  LoggingStatus.store(XRayLogInitStatus::XRAY_LOG_INITIALIZED,
                      std::memory_order_release);
  return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}

// Must finalize before flushing.
XRayLogFlushStatus fdrLoggingFlush() XRAY_NEVER_INSTRUMENT {
  if (LoggingStatus.load(std::memory_order_acquire) !=
      XRayLogInitStatus::XRAY_LOG_FINALIZED)
    return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;

  XRayLogFlushStatus Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
  if (!LogFlushStatus.compare_exchange_strong(
          Result, XRayLogFlushStatus::XRAY_LOG_FLUSHING,
          std::memory_order_release, std::memory_order_relaxed))
    return Result;

  // Make a copy of the BufferQueue pointer to prevent other threads that may be
  // resetting it from blowing away the queue prematurely while we're dealing
  // with it.
  auto LocalBQ = BQ;

  // We write out the file in the following format:
  //
  //   1) We write down the XRay file header with version 1, type FDR_LOG.
  //   2) Then we use the 'apply' member of the BufferQueue that's live, to
  //      ensure that at this point in time we write down the buffers that have
  //      been released (and marked "used") -- we dump the full buffer for now
  //      (fixed-sized) and let the tools reading the buffers deal with the data
  //      afterwards.
  //
  int Fd = FDROptions->Fd;
  if (Fd == -1)
    Fd = getLogFD();
  if (Fd == -1) {
    auto Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
    LogFlushStatus.store(Result, std::memory_order_release);
    return Result;
  }

  XRayFileHeader Header;
  Header.Version = 1;
  Header.Type = FileTypes::FDR_LOG;
  Header.CycleFrequency = getTSCFrequency();
  // FIXME: Actually check whether we have 'constant_tsc' and 'nonstop_tsc'
  // before setting the values in the header.
  Header.ConstantTSC = 1;
  Header.NonstopTSC = 1;
  clock_gettime(CLOCK_REALTIME, &Header.TS);
  retryingWriteAll(Fd, reinterpret_cast<char *>(&Header),
                   reinterpret_cast<char *>(&Header) + sizeof(Header));
  LocalBQ->apply([&](const BufferQueue::Buffer &B) {
    retryingWriteAll(Fd, reinterpret_cast<char *>(B.Buffer),
                     reinterpret_cast<char *>(B.Buffer) + B.Size);
  });
  LogFlushStatus.store(XRayLogFlushStatus::XRAY_LOG_FLUSHED,
                       std::memory_order_release);
  return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}

XRayLogInitStatus fdrLoggingFinalize() XRAY_NEVER_INSTRUMENT {
  XRayLogInitStatus CurrentStatus = XRayLogInitStatus::XRAY_LOG_INITIALIZED;
  if (!LoggingStatus.compare_exchange_strong(
          CurrentStatus, XRayLogInitStatus::XRAY_LOG_FINALIZING,
          std::memory_order_release, std::memory_order_relaxed))
    return CurrentStatus;

  // Do special things to make the log finalize itself, and not allow any more
  // operations to be performed until re-initialized.
  BQ->finalize();

  LoggingStatus.store(XRayLogInitStatus::XRAY_LOG_FINALIZED,
                      std::memory_order_release);
  return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}

XRayLogInitStatus fdrLoggingReset() XRAY_NEVER_INSTRUMENT {
  XRayLogInitStatus CurrentStatus = XRayLogInitStatus::XRAY_LOG_FINALIZED;
  if (!LoggingStatus.compare_exchange_strong(
          CurrentStatus, XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
          std::memory_order_release, std::memory_order_relaxed))
    return CurrentStatus;

  // Release the in-memory buffer queue.
  BQ.reset();

  // Spin until the flushing status is flushed.
  XRayLogFlushStatus CurrentFlushingStatus =
      XRayLogFlushStatus::XRAY_LOG_FLUSHED;
  while (!LogFlushStatus.compare_exchange_weak(
      CurrentFlushingStatus, XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING,
      std::memory_order_release, std::memory_order_relaxed)) {
    if (CurrentFlushingStatus == XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING)
      break;
    CurrentFlushingStatus = XRayLogFlushStatus::XRAY_LOG_FLUSHED;
  }

  // At this point, we know that the status is flushed, and that we can assume
  return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
}

namespace {
thread_local BufferQueue::Buffer Buffer;
thread_local char *RecordPtr = nullptr;

void setupNewBuffer(const BufferQueue::Buffer &Buffer) XRAY_NEVER_INSTRUMENT {
  RecordPtr = static_cast<char *>(Buffer.Buffer);

  static constexpr int InitRecordsCount = 2;
  std::aligned_storage<sizeof(MetadataRecord)>::type Records[InitRecordsCount];
  {
    // Write out a MetadataRecord to signify that this is the start of a new
    // buffer, associated with a particular thread, with a new CPU.  For the
    // data, we have 15 bytes to squeeze as much information as we can.  At this
    // point we only write down the following bytes:
    //   - Thread ID (pid_t, 4 bytes)
    auto &NewBuffer = *reinterpret_cast<MetadataRecord *>(&Records[0]);
    NewBuffer.Type = uint8_t(RecordType::Metadata);
    NewBuffer.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewBuffer);
    pid_t Tid = syscall(SYS_gettid);
    std::memcpy(&NewBuffer.Data, &Tid, sizeof(pid_t));
  }

  // Also write the WalltimeMarker record.
  {
    static_assert(sizeof(time_t) <= 8, "time_t needs to be at most 8 bytes");
    auto &WalltimeMarker = *reinterpret_cast<MetadataRecord *>(&Records[1]);
    WalltimeMarker.Type = uint8_t(RecordType::Metadata);
    WalltimeMarker.RecordKind =
        uint8_t(MetadataRecord::RecordKinds::WalltimeMarker);
    timespec TS{0, 0};
    clock_gettime(CLOCK_MONOTONIC, &TS);

    // We only really need microsecond precision here, and enforce across
    // platforms that we need 64-bit seconds and 32-bit microseconds encoded in
    // the Metadata record.
    int32_t Micros = TS.tv_nsec / 1000;
    int64_t Seconds = TS.tv_sec;
    std::memcpy(WalltimeMarker.Data, &Seconds, sizeof(Seconds));
    std::memcpy(WalltimeMarker.Data + sizeof(Seconds), &Micros, sizeof(Micros));
  }
  std::memcpy(RecordPtr, Records, sizeof(MetadataRecord) * InitRecordsCount);
  RecordPtr += sizeof(MetadataRecord) * InitRecordsCount;
}

void writeNewCPUIdMetadata(uint16_t CPU, uint64_t TSC) XRAY_NEVER_INSTRUMENT {
  MetadataRecord NewCPUId;
  NewCPUId.Type = uint8_t(RecordType::Metadata);
  NewCPUId.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewCPUId);

  // The data for the New CPU will contain the following bytes:
  //   - CPU ID (uint16_t, 2 bytes)
  //   - Full TSC (uint64_t, 8 bytes)
  // Total = 12 bytes.
  std::memcpy(&NewCPUId.Data, &CPU, sizeof(CPU));
  std::memcpy(&NewCPUId.Data[sizeof(CPU)], &TSC, sizeof(TSC));
  std::memcpy(RecordPtr, &NewCPUId, sizeof(MetadataRecord));
  RecordPtr += sizeof(MetadataRecord);
}

void writeEOBMetadata() XRAY_NEVER_INSTRUMENT {
  MetadataRecord EOBMeta;
  EOBMeta.Type = uint8_t(RecordType::Metadata);
  EOBMeta.RecordKind = uint8_t(MetadataRecord::RecordKinds::EndOfBuffer);
  // For now we don't write any bytes into the Data field.
  std::memcpy(RecordPtr, &EOBMeta, sizeof(MetadataRecord));
  RecordPtr += sizeof(MetadataRecord);
}

void writeTSCWrapMetadata(uint64_t TSC) XRAY_NEVER_INSTRUMENT {
  MetadataRecord TSCWrap;
  TSCWrap.Type = uint8_t(RecordType::Metadata);
  TSCWrap.RecordKind = uint8_t(MetadataRecord::RecordKinds::TSCWrap);

  // The data for the TSCWrap record contains the following bytes:
  //   - Full TSC (uint64_t, 8 bytes)
  // Total = 8 bytes.
  std::memcpy(&TSCWrap.Data, &TSC, sizeof(TSC));
  std::memcpy(RecordPtr, &TSCWrap, sizeof(MetadataRecord));
  RecordPtr += sizeof(MetadataRecord);
}

constexpr auto MetadataRecSize = sizeof(MetadataRecord);
constexpr auto FunctionRecSize = sizeof(FunctionRecord);

class ThreadExitBufferCleanup {
  std::weak_ptr<BufferQueue> Buffers;
  BufferQueue::Buffer &Buffer;

public:
  explicit ThreadExitBufferCleanup(std::weak_ptr<BufferQueue> BQ,
                                   BufferQueue::Buffer &Buffer)
      XRAY_NEVER_INSTRUMENT : Buffers(BQ),
                              Buffer(Buffer) {}

  ~ThreadExitBufferCleanup() noexcept XRAY_NEVER_INSTRUMENT {
    if (RecordPtr == nullptr)
      return;

    // We make sure that upon exit, a thread will write out the EOB
    // MetadataRecord in the thread-local log, and also release the buffer to
    // the queue.
    assert((RecordPtr + MetadataRecSize) - static_cast<char *>(Buffer.Buffer) >=
           static_cast<ptrdiff_t>(MetadataRecSize));
    if (auto BQ = Buffers.lock()) {
      writeEOBMetadata();
      if (auto EC = BQ->releaseBuffer(Buffer))
        Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
               EC.message().c_str());
      return;
    }
  }
};

class RecursionGuard {
  bool &Running;
  const bool Valid;

public:
  explicit RecursionGuard(bool &R) : Running(R), Valid(!R) {
    if (Valid)
      Running = true;
  }

  RecursionGuard(const RecursionGuard &) = delete;
  RecursionGuard(RecursionGuard &&) = delete;
  RecursionGuard &operator=(const RecursionGuard &) = delete;
  RecursionGuard &operator=(RecursionGuard &&) = delete;

  explicit operator bool() const { return Valid; }

  ~RecursionGuard() noexcept {
    if (Valid)
      Running = false;
  }
};

inline bool loggingInitialized() {
  return LoggingStatus.load(std::memory_order_acquire) ==
         XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}

} // namespace

void fdrLoggingHandleArg0(int32_t FuncId,
                           XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
  // We want to get the TSC as early as possible, so that we can check whether
  // we've seen this CPU before. We also do it before we load anything else, to
  // allow for forward progress with the scheduling.
  unsigned char CPU;
  uint64_t TSC = __xray::readTSC(CPU);

  // Bail out right away if logging is not initialized yet.
  if (LoggingStatus.load(std::memory_order_acquire) !=
      XRayLogInitStatus::XRAY_LOG_INITIALIZED)
    return;

  // We use a thread_local variable to keep track of which CPUs we've already
  // run, and the TSC times for these CPUs. This allows us to stop repeating the
  // CPU field in the function records.
  //
  // We assume that we'll support only 65536 CPUs for x86_64.
  thread_local uint16_t CurrentCPU = std::numeric_limits<uint16_t>::max();
  thread_local uint64_t LastTSC = 0;

  // Make sure a thread that's ever called handleArg0 has a thread-local
  // live reference to the buffer queue for this particular instance of
  // FDRLogging, and that we're going to clean it up when the thread exits.
  thread_local auto LocalBQ = BQ;
  thread_local ThreadExitBufferCleanup Cleanup(LocalBQ, Buffer);

  // Prevent signal handler recursion, so in case we're already in a log writing
  // mode and the signal handler comes in (and is also instrumented) then we
  // don't want to be clobbering potentially partial writes already happening in
  // the thread. We use a simple thread_local latch to only allow one on-going
  // handleArg0 to happen at any given time.
  thread_local bool Running = false;
  RecursionGuard Guard{Running};
  if (!Guard) {
    assert(Running == true && "RecursionGuard is buggy!");
    return;
  }

  if (!loggingInitialized() || LocalBQ->finalizing()) {
    writeEOBMetadata();
    if (auto EC = BQ->releaseBuffer(Buffer)) {
      Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
             EC.message().c_str());
      return;
    }
    RecordPtr = nullptr;
  }

  if (Buffer.Buffer == nullptr) {
    if (auto EC = LocalBQ->getBuffer(Buffer)) {
      auto LS = LoggingStatus.load(std::memory_order_acquire);
      if (LS != XRayLogInitStatus::XRAY_LOG_FINALIZING &&
          LS != XRayLogInitStatus::XRAY_LOG_FINALIZED)
        Report("Failed to acquire a buffer; error=%s\n", EC.message().c_str());
      return;
    }

    setupNewBuffer(Buffer);
  }

  if (CurrentCPU == std::numeric_limits<uint16_t>::max()) {
    // This means this is the first CPU this thread has ever run on. We set the
    // current CPU and record this as the first TSC we've seen.
    CurrentCPU = CPU;
    writeNewCPUIdMetadata(CPU, TSC);
  }

  // Before we go setting up writing new function entries, we need to be really
  // careful about the pointer math we're doing. This means we need to ensure
  // that the record we are about to write is going to fit into the buffer,
  // without overflowing the buffer.
  //
  // To do this properly, we use the following assumptions:
  //
  //   - The least number of bytes we will ever write is 8
  //     (sizeof(FunctionRecord)) only if the delta between the previous entry
  //     and this entry is within 32 bits.
  //   - The most number of bytes we will ever write is 8 + 16 = 24. This is
  //     computed by:
  //
  //       sizeof(FunctionRecord) + sizeof(MetadataRecord)
  //
  //     These arise in the following cases:
  //
  //       1. When the delta between the TSC we get and the previous TSC for the
  //          same CPU is outside of the uint32_t range, we end up having to
  //          write a MetadataRecord to indicate a "tsc wrap" before the actual
  //          FunctionRecord.
  //       2. When we learn that we've moved CPUs, we need to write a
  //          MetadataRecord to indicate a "cpu change", and thus write out the
  //          current TSC for that CPU before writing out the actual
  //          FunctionRecord.
  //       3. When we learn about a new CPU ID, we need to write down a "new cpu
  //          id" MetadataRecord before writing out the actual FunctionRecord.
  //
  //   - An End-of-Buffer (EOB) MetadataRecord is 16 bytes.
  //
  // So the math we need to do is to determine whether writing 24 bytes past the
  // current pointer leaves us with enough bytes to write the EOB
  // MetadataRecord. If we don't have enough space after writing as much as 24
  // bytes in the end of the buffer, we need to write out the EOB, get a new
  // Buffer, set it up properly before doing any further writing.
  //
  char *BufferStart = static_cast<char *>(Buffer.Buffer);
  if ((RecordPtr + (MetadataRecSize + FunctionRecSize)) - BufferStart <
      static_cast<ptrdiff_t>(MetadataRecSize)) {
    writeEOBMetadata();
    if (auto EC = LocalBQ->releaseBuffer(Buffer)) {
      Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
             EC.message().c_str());
      return;
    }
    if (auto EC = LocalBQ->getBuffer(Buffer)) {
      Report("Failed to acquire a buffer; error=%s\n", EC.message().c_str());
      return;
    }
    setupNewBuffer(Buffer);
  }

  // By this point, we are now ready to write at most 24 bytes (one metadata
  // record and one function record).
  BufferStart = static_cast<char *>(Buffer.Buffer);
  assert((RecordPtr + (MetadataRecSize + FunctionRecSize)) - BufferStart >=
             static_cast<ptrdiff_t>(MetadataRecSize) &&
         "Misconfigured BufferQueue provided; Buffer size not large enough.");

  std::aligned_storage<sizeof(FunctionRecord), alignof(FunctionRecord)>::type
      AlignedFuncRecordBuffer;
  auto &FuncRecord =
      *reinterpret_cast<FunctionRecord *>(&AlignedFuncRecordBuffer);
  FuncRecord.Type = uint8_t(RecordType::Function);

  // Only get the lower 28 bits of the function id.
  FuncRecord.FuncId = FuncId & ~(0x0F << 28);

  // Here we compute the TSC Delta. There are a few interesting situations we
  // need to account for:
  //
  //   - The thread has migrated to a different CPU. If this is the case, then
  //     we write down the following records:
  //
  //       1. A 'NewCPUId' Metadata record.
  //       2. A FunctionRecord with a 0 for the TSCDelta field.
  //
  //   - The TSC delta is greater than the 32 bits we can store in a
  //     FunctionRecord. In this case we write down the following records:
  //
  //       1. A 'TSCWrap' Metadata record.
  //       2. A FunctionRecord with a 0 for the TSCDelta field.
  //
  //   - The TSC delta is representable within the 32 bits we can store in a
  //     FunctionRecord. In this case we write down just a FunctionRecord with
  //     the correct TSC delta.
  //
  FuncRecord.TSCDelta = 0;
  if (CPU != CurrentCPU) {
    // We've moved to a new CPU.
    writeNewCPUIdMetadata(CPU, TSC);
  } else {
    // If the delta is greater than the range for a uint32_t, then we write out
    // the TSC wrap metadata entry with the full TSC, and the TSC for the
    // function record be 0.
    auto Delta = LastTSC - TSC;
    if (Delta > (1ULL << 32) - 1)
      writeTSCWrapMetadata(TSC);
    else
      FuncRecord.TSCDelta = Delta;
  }

  // We then update our "LastTSC" and "CurrentCPU" thread-local variables to aid
  // us in future computations of this TSC delta value.
  LastTSC = TSC;
  CurrentCPU = CPU;

  switch (Entry) {
  case XRayEntryType::ENTRY:
    FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionEnter);
    break;
  case XRayEntryType::EXIT:
    FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionExit);
    break;
  case XRayEntryType::TAIL:
    FuncRecord.RecordKind =
        uint8_t(FunctionRecord::RecordKinds::FunctionTailExit);
    break;
  }

  std::memcpy(RecordPtr, &AlignedFuncRecordBuffer, sizeof(FunctionRecord));
  RecordPtr += sizeof(FunctionRecord);

  // If we've exhausted the buffer by this time, we then release the buffer to
  // make sure that other threads may start using this buffer.
  if ((RecordPtr + MetadataRecSize) - BufferStart == MetadataRecSize) {
    writeEOBMetadata();
    if (auto EC = LocalBQ->releaseBuffer(Buffer)) {
      Report("Failed releasing buffer at %p; error=%s\n", Buffer.Buffer,
             EC.message().c_str());
      return;
    }
    RecordPtr = nullptr;
  }
}

} // namespace __xray

static auto UNUSED Unused = [] {
  using namespace __xray;
  if (flags()->xray_fdr_log) {
    XRayLogImpl Impl{
        fdrLoggingInit, fdrLoggingFinalize, fdrLoggingHandleArg0,
        fdrLoggingFlush,
    };
    __xray_set_log_impl(Impl);
  }
  return true;
}();