summaryrefslogtreecommitdiff
path: root/lib/xray/xray_buffer_queue.cc
blob: 3ce728900787bf612c4b5e475b0eeb20635795fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
//===-- xray_buffer_queue.cc -----------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instruementation system.
//
// Defines the interface for a buffer queue implementation.
//
//===----------------------------------------------------------------------===//
#include "xray_buffer_queue.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_posix.h"
#include <memory>
#include <sys/mman.h>

#ifndef MAP_NORESERVE
// no-op on NetBSD (at least), unsupported flag on FreeBSD
#define MAP_NORESERVE 0
#endif

using namespace __xray;
using namespace __sanitizer;

template <class T> static T *allocRaw(size_t N) {
  // TODO: Report errors?
  // We use MAP_NORESERVE on platforms where it's supported to ensure that the
  // pages we're allocating for XRay never end up in pages that can be swapped
  // in/out. We're doing this because for FDR mode, we want to ensure that
  // writes to the buffers stay resident in memory to prevent XRay itself from
  // causing swapping/thrashing.
  //
  // In the case when XRay pages cannot be swapped in/out or there's not enough
  // RAM to back these pages, we're willing to cause a segmentation fault
  // instead of introducing latency in the measurement. We assume here that
  // there are enough pages that are swappable in/out outside of the buffers
  // being used by FDR mode (which are bounded and configurable anyway) to allow
  // us to keep using always-resident memory.
  //
  // TODO: Make this configurable?
  void *A = reinterpret_cast<void *>(
      internal_mmap(NULL, N * sizeof(T), PROT_WRITE | PROT_READ,
                    MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0));
  return (A == MAP_FAILED) ? nullptr : reinterpret_cast<T *>(A);
}

template <class T> static void deallocRaw(T *ptr, size_t N) {
  // TODO: Report errors?
  if (ptr != nullptr)
    internal_munmap(ptr, N);
}

template <class T> static T *initArray(size_t N) {
  auto A = allocRaw<T>(N);
  if (A != nullptr)
    while (N > 0)
      new (A + (--N)) T();
  return A;
}

BufferQueue::BufferQueue(size_t B, size_t N, bool &Success)
    : BufferSize(B), Buffers(initArray<BufferQueue::BufferRep>(N)),
      BufferCount(N), Finalizing{0}, OwnedBuffers(initArray<void *>(N)),
      Next(Buffers), First(Buffers), LiveBuffers(0) {
  if (Buffers == nullptr) {
    Success = false;
    return;
  }
  if (OwnedBuffers == nullptr) {
    // Clean up the buffers we've already allocated.
    for (auto B = Buffers, E = Buffers + BufferCount; B != E; ++B)
      B->~BufferRep();
    deallocRaw(Buffers, N);
    Success = false;
    return;
  };

  for (size_t i = 0; i < N; ++i) {
    auto &T = Buffers[i];
    void *Tmp = allocRaw<char>(BufferSize);
    if (Tmp == nullptr) {
      Success = false;
      return;
    }
    auto *Extents = allocRaw<BufferExtents>(1);
    if (Extents == nullptr) {
      Success = false;
      return;
    }
    auto &Buf = T.Buff;
    Buf.Data = Tmp;
    Buf.Size = B;
    Buf.Extents = Extents;
    OwnedBuffers[i] = Tmp;
  }
  Success = true;
}

BufferQueue::ErrorCode BufferQueue::getBuffer(Buffer &Buf) {
  if (atomic_load(&Finalizing, memory_order_acquire))
    return ErrorCode::QueueFinalizing;
  SpinMutexLock Guard(&Mutex);
  if (LiveBuffers == BufferCount)
    return ErrorCode::NotEnoughMemory;

  auto &T = *Next;
  auto &B = T.Buff;
  Buf = B;
  T.Used = true;
  ++LiveBuffers;

  if (++Next == (Buffers + BufferCount))
    Next = Buffers;

  return ErrorCode::Ok;
}

BufferQueue::ErrorCode BufferQueue::releaseBuffer(Buffer &Buf) {
  // Blitz through the buffers array to find the buffer.
  bool Found = false;
  for (auto I = OwnedBuffers, E = OwnedBuffers + BufferCount; I != E; ++I) {
    if (*I == Buf.Data) {
      Found = true;
      break;
    }
  }
  if (!Found)
    return ErrorCode::UnrecognizedBuffer;

  SpinMutexLock Guard(&Mutex);

  // This points to a semantic bug, we really ought to not be releasing more
  // buffers than we actually get.
  if (LiveBuffers == 0)
    return ErrorCode::NotEnoughMemory;

  // Now that the buffer has been released, we mark it as "used".
  First->Buff = Buf;
  First->Used = true;
  Buf.Data = nullptr;
  Buf.Size = 0;
  --LiveBuffers;
  if (++First == (Buffers + BufferCount))
    First = Buffers;

  return ErrorCode::Ok;
}

BufferQueue::ErrorCode BufferQueue::finalize() {
  if (atomic_exchange(&Finalizing, 1, memory_order_acq_rel))
    return ErrorCode::QueueFinalizing;
  return ErrorCode::Ok;
}

BufferQueue::~BufferQueue() {
  for (auto I = Buffers, E = Buffers + BufferCount; I != E; ++I) {
    auto &T = *I;
    auto &Buf = T.Buff;
    deallocRaw(Buf.Data, Buf.Size);
    deallocRaw(Buf.Extents, 1);
  }
  for (auto B = Buffers, E = Buffers + BufferCount; B != E; ++B)
    B->~BufferRep();
  deallocRaw(Buffers, BufferCount);
  deallocRaw(OwnedBuffers, BufferCount);
}