summaryrefslogtreecommitdiff
path: root/lib/xray/xray_basic_logging.cc
blob: 529fde8d5ff616ea2ba3540882c5d11f192948a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
//===-- xray_basic_logging.cc -----------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of a simple in-memory log of XRay events. This defines a
// logging function that's compatible with the XRay handler interface, and
// routines for exporting data to files.
//
//===----------------------------------------------------------------------===//

#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>

#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "xray/xray_records.h"
#include "xray_recursion_guard.h"
#include "xray_basic_flags.h"
#include "xray_basic_logging.h"
#include "xray_defs.h"
#include "xray_flags.h"
#include "xray_interface_internal.h"
#include "xray_tsc.h"
#include "xray_utils.h"

namespace __xray {

SpinMutex LogMutex;

// We use elements of this type to record the entry TSC of every function ID we
// see as we're tracing a particular thread's execution.
struct alignas(16) StackEntry {
  int32_t FuncId;
  uint16_t Type;
  uint8_t CPU;
  uint8_t Padding;
  uint64_t TSC;
};

static_assert(sizeof(StackEntry) == 16, "Wrong size for StackEntry");

struct alignas(64) ThreadLocalData {
  void *InMemoryBuffer = nullptr;
  size_t BufferSize = 0;
  size_t BufferOffset = 0;
  void *ShadowStack = nullptr;
  size_t StackSize = 0;
  size_t StackEntries = 0;
  int Fd = -1;
};

static pthread_key_t PThreadKey;

static atomic_uint8_t BasicInitialized{0};

BasicLoggingOptions GlobalOptions;

thread_local atomic_uint8_t Guard{0};

static atomic_uint8_t UseRealTSC{0};
static atomic_uint64_t ThresholdTicks{0};
static atomic_uint64_t TicksPerSec{0};
static atomic_uint64_t CycleFrequency{NanosecondsPerSecond};

static int openLogFile() XRAY_NEVER_INSTRUMENT {
  int F = getLogFD();
  if (F == -1)
    return -1;

  static pthread_once_t DetectOnce = PTHREAD_ONCE_INIT;
  pthread_once(&DetectOnce, +[] {
    if (atomic_load(&UseRealTSC, memory_order_acquire))
      atomic_store(&CycleFrequency, getTSCFrequency(), memory_order_release);
  });

  // Since we're here, we get to write the header. We set it up so that the
  // header will only be written once, at the start, and let the threads
  // logging do writes which just append.
  XRayFileHeader Header;
  Header.Version = 2; // Version 2 includes tail exit records.
  Header.Type = FileTypes::NAIVE_LOG;
  Header.CycleFrequency = atomic_load(&CycleFrequency, memory_order_acquire);

  // FIXME: Actually check whether we have 'constant_tsc' and 'nonstop_tsc'
  // before setting the values in the header.
  Header.ConstantTSC = 1;
  Header.NonstopTSC = 1;
  retryingWriteAll(F, reinterpret_cast<char *>(&Header),
                   reinterpret_cast<char *>(&Header) + sizeof(Header));
  return F;
}

static int getGlobalFd() XRAY_NEVER_INSTRUMENT {
  static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
  static int Fd = 0;
  pthread_once(&OnceInit, +[] { Fd = openLogFile(); });
  return Fd;
}

static ThreadLocalData &getThreadLocalData() XRAY_NEVER_INSTRUMENT {
  thread_local ThreadLocalData TLD;
  thread_local bool UNUSED TOnce = [] {
    if (GlobalOptions.ThreadBufferSize == 0) {
      if (Verbosity())
        Report("Not initializing TLD since ThreadBufferSize == 0.\n");
      return false;
    }
    pthread_setspecific(PThreadKey, &TLD);
    TLD.Fd = getGlobalFd();
    TLD.InMemoryBuffer = reinterpret_cast<XRayRecord *>(
        InternalAlloc(sizeof(XRayRecord) * GlobalOptions.ThreadBufferSize,
                      nullptr, alignof(XRayRecord)));
    TLD.BufferSize = GlobalOptions.ThreadBufferSize;
    TLD.BufferOffset = 0;
    if (GlobalOptions.MaxStackDepth == 0) {
      if (Verbosity())
        Report("Not initializing the ShadowStack since MaxStackDepth == 0.\n");
      TLD.StackSize = 0;
      TLD.StackEntries = 0;
      TLD.ShadowStack = nullptr;
      return false;
    }
    TLD.ShadowStack = reinterpret_cast<StackEntry *>(
        InternalAlloc(sizeof(StackEntry) * GlobalOptions.MaxStackDepth, nullptr,
                      alignof(StackEntry)));
    TLD.StackSize = GlobalOptions.MaxStackDepth;
    TLD.StackEntries = 0;
    return false;
  }();
  return TLD;
}

template <class RDTSC>
void InMemoryRawLog(int32_t FuncId, XRayEntryType Type,
                    RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
  auto &TLD = getThreadLocalData();
  int Fd = getGlobalFd();
  if (Fd == -1)
    return;

  // Use a simple recursion guard, to handle cases where we're already logging
  // and for one reason or another, this function gets called again in the same
  // thread.
  RecursionGuard G(Guard);
  if (!G)
    return;

  uint8_t CPU = 0;
  uint64_t TSC = ReadTSC(CPU);

  switch (Type) {
  case XRayEntryType::ENTRY:
  case XRayEntryType::LOG_ARGS_ENTRY: {
    // Short circuit if we've reached the maximum depth of the stack.
    if (TLD.StackEntries++ >= TLD.StackSize)
      return;

    // When we encounter an entry event, we keep track of the TSC and the CPU,
    // and put it in the stack.
    StackEntry E;
    E.FuncId = FuncId;
    E.CPU = CPU;
    E.Type = Type;
    E.TSC = TSC;
    auto StackEntryPtr = static_cast<char *>(TLD.ShadowStack) +
                         (sizeof(StackEntry) * (TLD.StackEntries - 1));
    internal_memcpy(StackEntryPtr, &E, sizeof(StackEntry));
    break;
  }
  case XRayEntryType::EXIT:
  case XRayEntryType::TAIL: {
    if (TLD.StackEntries == 0)
      break;

    if (--TLD.StackEntries >= TLD.StackSize)
      return;

    // When we encounter an exit event, we check whether all the following are
    // true:
    //
    // - The Function ID is the same as the most recent entry in the stack.
    // - The CPU is the same as the most recent entry in the stack.
    // - The Delta of the TSCs is less than the threshold amount of time we're
    //   looking to record.
    //
    // If all of these conditions are true, we pop the stack and don't write a
    // record and move the record offset back.
    StackEntry StackTop;
    auto StackEntryPtr = static_cast<char *>(TLD.ShadowStack) +
                         (sizeof(StackEntry) * TLD.StackEntries);
    internal_memcpy(&StackTop, StackEntryPtr, sizeof(StackEntry));
    if (StackTop.FuncId == FuncId && StackTop.CPU == CPU &&
        StackTop.TSC < TSC) {
      auto Delta = TSC - StackTop.TSC;
      if (Delta < atomic_load(&ThresholdTicks, memory_order_relaxed)) {
        DCHECK(TLD.BufferOffset > 0);
        TLD.BufferOffset -= StackTop.Type == XRayEntryType::ENTRY ? 1 : 2;
        return;
      }
    }
    break;
  }
  default:
    // Should be unreachable.
    DCHECK(false && "Unsupported XRayEntryType encountered.");
    break;
  }

  // First determine whether the delta between the function's enter record and
  // the exit record is higher than the threshold.
  XRayRecord R;
  R.RecordType = RecordTypes::NORMAL;
  R.CPU = CPU;
  R.TSC = TSC;
  R.TId = GetTid(); 
  R.PId = internal_getpid(); 
  R.Type = Type;
  R.FuncId = FuncId;
  auto FirstEntry = reinterpret_cast<XRayRecord *>(TLD.InMemoryBuffer);
  internal_memcpy(FirstEntry + TLD.BufferOffset, &R, sizeof(R));
  if (++TLD.BufferOffset == TLD.BufferSize) {
    SpinMutexLock L(&LogMutex);
    retryingWriteAll(Fd, reinterpret_cast<char *>(FirstEntry),
                     reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
    TLD.BufferOffset = 0;
    TLD.StackEntries = 0;
  }
}

template <class RDTSC>
void InMemoryRawLogWithArg(int32_t FuncId, XRayEntryType Type, uint64_t Arg1,
                           RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
  auto &TLD = getThreadLocalData();
  auto FirstEntry =
      reinterpret_cast<XRayArgPayload *>(TLD.InMemoryBuffer);
  const auto &BuffLen = TLD.BufferSize;
  int Fd = getGlobalFd();
  if (Fd == -1)
    return;

  // First we check whether there's enough space to write the data consecutively
  // in the thread-local buffer. If not, we first flush the buffer before
  // attempting to write the two records that must be consecutive.
  if (TLD.BufferOffset + 2 > BuffLen) {
    SpinMutexLock L(&LogMutex);
    retryingWriteAll(Fd, reinterpret_cast<char *>(FirstEntry),
                     reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
    TLD.BufferOffset = 0;
    TLD.StackEntries = 0;
  }

  // Then we write the "we have an argument" record.
  InMemoryRawLog(FuncId, Type, ReadTSC);

  RecursionGuard G(Guard);
  if (!G)
    return;

  // And from here on write the arg payload.
  XRayArgPayload R;
  R.RecordType = RecordTypes::ARG_PAYLOAD;
  R.FuncId = FuncId;
  R.TId = GetTid(); 
  R.PId = internal_getpid(); 
  R.Arg = Arg1;
  internal_memcpy(FirstEntry + TLD.BufferOffset, &R, sizeof(R));
  if (++TLD.BufferOffset == BuffLen) {
    SpinMutexLock L(&LogMutex);
    retryingWriteAll(Fd, reinterpret_cast<char *>(FirstEntry),
                     reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
    TLD.BufferOffset = 0;
    TLD.StackEntries = 0;
  }
}

void basicLoggingHandleArg0RealTSC(int32_t FuncId,
                                   XRayEntryType Type) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLog(FuncId, Type, readTSC);
}

void basicLoggingHandleArg0EmulateTSC(int32_t FuncId, XRayEntryType Type)
    XRAY_NEVER_INSTRUMENT {
  InMemoryRawLog(FuncId, Type, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
    timespec TS;
    int result = clock_gettime(CLOCK_REALTIME, &TS);
    if (result != 0) {
      Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
      TS = {0, 0};
    }
    CPU = 0;
    return TS.tv_sec * NanosecondsPerSecond + TS.tv_nsec;
  });
}

void basicLoggingHandleArg1RealTSC(int32_t FuncId, XRayEntryType Type,
                                   uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLogWithArg(FuncId, Type, Arg1, readTSC);
}

void basicLoggingHandleArg1EmulateTSC(int32_t FuncId, XRayEntryType Type,
                                      uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLogWithArg(
      FuncId, Type, Arg1, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
        timespec TS;
        int result = clock_gettime(CLOCK_REALTIME, &TS);
        if (result != 0) {
          Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
          TS = {0, 0};
        }
        CPU = 0;
        return TS.tv_sec * NanosecondsPerSecond + TS.tv_nsec;
      });
}

static void TLDDestructor(void *P) XRAY_NEVER_INSTRUMENT {
  ThreadLocalData &TLD = *reinterpret_cast<ThreadLocalData *>(P);
  auto ExitGuard = at_scope_exit([&TLD] {
    // Clean up dynamic resources.
    if (TLD.InMemoryBuffer)
      InternalFree(TLD.InMemoryBuffer);
    if (TLD.ShadowStack)
      InternalFree(TLD.ShadowStack);
    if (Verbosity())
      Report("Cleaned up log for TID: %d\n", GetTid());
  });

  if (TLD.Fd == -1 || TLD.BufferOffset == 0) {
    if (Verbosity())
      Report("Skipping buffer for TID: %d; Fd = %d; Offset = %llu\n", GetTid(),
             TLD.Fd, TLD.BufferOffset);
    return;
  }

  {
    SpinMutexLock L(&LogMutex);
    retryingWriteAll(TLD.Fd, reinterpret_cast<char *>(TLD.InMemoryBuffer),
                     reinterpret_cast<char *>(TLD.InMemoryBuffer) +
                         (sizeof(XRayRecord) * TLD.BufferOffset));
  }

  // Because this thread's exit could be the last one trying to write to
  // the file and that we're not able to close out the file properly, we
  // sync instead and hope that the pending writes are flushed as the
  // thread exits.
  fsync(TLD.Fd);
}

XRayLogInitStatus basicLoggingInit(size_t BufferSize, size_t BufferMax,
                                   void *Options,
                                   size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
  uint8_t Expected = 0;
  if (!atomic_compare_exchange_strong(&BasicInitialized, &Expected, 1,
                                      memory_order_acq_rel)) {
    if (Verbosity())
      Report("Basic logging already initialized.\n");
    return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
  }

  static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
  pthread_once(&OnceInit, +[] {
    pthread_key_create(&PThreadKey, TLDDestructor);
    atomic_store(&UseRealTSC, probeRequiredCPUFeatures(), memory_order_release);
    // Initialize the global TicksPerSec value.
    atomic_store(&TicksPerSec,
                 probeRequiredCPUFeatures() ? getTSCFrequency()
                                            : NanosecondsPerSecond,
                 memory_order_release);
    if (!atomic_load(&UseRealTSC, memory_order_relaxed) && Verbosity())
      Report("WARNING: Required CPU features missing for XRay instrumentation, "
             "using emulation instead.\n");
  });

  if (BufferSize == 0 && BufferMax == 0 && Options != nullptr) {
    FlagParser P;
    BasicFlags F;
    F.setDefaults();
    registerXRayBasicFlags(&P, &F);
    P.ParseString(useCompilerDefinedBasicFlags());
    auto *EnvOpts = GetEnv("XRAY_BASIC_OPTIONS");
    if (EnvOpts == nullptr)
      EnvOpts = "";

    P.ParseString(EnvOpts);

    // If XRAY_BASIC_OPTIONS was not defined, then we use the deprecated options
    // set through XRAY_OPTIONS instead.
    if (internal_strlen(EnvOpts) == 0) {
      F.func_duration_threshold_us =
          flags()->xray_naive_log_func_duration_threshold_us;
      F.max_stack_depth = flags()->xray_naive_log_max_stack_depth;
      F.thread_buffer_size = flags()->xray_naive_log_thread_buffer_size;
    }

    P.ParseString(static_cast<const char *>(Options));
    GlobalOptions.ThreadBufferSize = F.thread_buffer_size;
    GlobalOptions.DurationFilterMicros = F.func_duration_threshold_us;
    GlobalOptions.MaxStackDepth = F.max_stack_depth;
    *basicFlags() = F;
  } else if (OptionsSize != sizeof(BasicLoggingOptions)) {
    Report("Invalid options size, potential ABI mismatch; expected %d got %d",
           sizeof(BasicLoggingOptions), OptionsSize);
    return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
  } else {
    if (Verbosity())
      Report("XRay Basic: struct-based init is deprecated, please use "
             "string-based configuration instead.\n");
    GlobalOptions = *reinterpret_cast<BasicLoggingOptions *>(Options);
  }

  atomic_store(&ThresholdTicks,
               atomic_load(&TicksPerSec, memory_order_acquire) *
                   GlobalOptions.DurationFilterMicros / 1000000,
               memory_order_release);
  __xray_set_handler_arg1(atomic_load(&UseRealTSC, memory_order_acquire)
                              ? basicLoggingHandleArg1RealTSC
                              : basicLoggingHandleArg1EmulateTSC);
  __xray_set_handler(atomic_load(&UseRealTSC, memory_order_acquire)
                         ? basicLoggingHandleArg0RealTSC
                         : basicLoggingHandleArg0EmulateTSC);

  // TODO: Implement custom event and typed event handling support in Basic
  // Mode.
  __xray_remove_customevent_handler();
  __xray_remove_typedevent_handler();

  return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}

XRayLogInitStatus basicLoggingFinalize() XRAY_NEVER_INSTRUMENT {
  uint8_t Expected = 0;
  if (!atomic_compare_exchange_strong(&BasicInitialized, &Expected, 0,
                                      memory_order_acq_rel) &&
      Verbosity())
    Report("Basic logging already finalized.\n");

  // Nothing really to do aside from marking state of the global to be
  // uninitialized.

  return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}

XRayLogFlushStatus basicLoggingFlush() XRAY_NEVER_INSTRUMENT {
  // This really does nothing, since flushing the logs happen at the end of a
  // thread's lifetime, or when the buffers are full.
  return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}

// This is a handler that, effectively, does nothing.
void basicLoggingHandleArg0Empty(int32_t, XRayEntryType) XRAY_NEVER_INSTRUMENT {
}

bool basicLogDynamicInitializer() XRAY_NEVER_INSTRUMENT {
  XRayLogImpl Impl{
      basicLoggingInit,
      basicLoggingFinalize,
      basicLoggingHandleArg0Empty,
      basicLoggingFlush,
  };
  auto RegistrationResult = __xray_log_register_mode("xray-basic", Impl);
  if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
      Verbosity())
    Report("Cannot register XRay Basic Mode to 'xray-basic'; error = %d\n",
           RegistrationResult);
  if (flags()->xray_naive_log ||
      !internal_strcmp(flags()->xray_mode, "xray-basic")) {
    auto SelectResult = __xray_log_select_mode("xray-basic");
    if (SelectResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK) {
      if (Verbosity())
        Report("Failed selecting XRay Basic Mode; error = %d\n", SelectResult);
      return false;
    }

    // We initialize the implementation using the data we get from the
    // XRAY_BASIC_OPTIONS environment variable, at this point of the
    // implementation.
    auto *Env = GetEnv("XRAY_BASIC_OPTIONS");
    auto InitResult =
        __xray_log_init_mode("xray-basic", Env == nullptr ? "" : Env);
    if (InitResult != XRayLogInitStatus::XRAY_LOG_INITIALIZED) {
      if (Verbosity())
        Report("Failed initializing XRay Basic Mode; error = %d\n", InitResult);
      return false;
    }

    // At this point we know that we've successfully initialized Basic mode
    // tracing, and the only chance we're going to get for the current thread to
    // clean-up may be at thread/program exit. To ensure that we're going to get
    // the cleanup even without calling the finalization routines, we're
    // registering a program exit function that will do the cleanup.
    static pthread_once_t DynamicOnce = PTHREAD_ONCE_INIT;
    pthread_once(&DynamicOnce, +[] {
      static void *FakeTLD = nullptr;
      FakeTLD = &getThreadLocalData();
      Atexit(+[] { TLDDestructor(FakeTLD); });
    });
  }
  return true;
}

} // namespace __xray

static auto UNUSED Unused = __xray::basicLogDynamicInitializer();