summaryrefslogtreecommitdiff
path: root/lib/tsan/tests/unit/tsan_mman_test.cc
blob: 05ae4286704c97aa6fdc44b77af32968a0b73ac7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
//===-- tsan_mman_test.cc -------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include <limits>
#include <sanitizer/allocator_interface.h>
#include "tsan_mman.h"
#include "tsan_rtl.h"
#include "gtest/gtest.h"

namespace __tsan {

TEST(Mman, Internal) {
  char *p = (char*)internal_alloc(MBlockScopedBuf, 10);
  EXPECT_NE(p, (char*)0);
  char *p2 = (char*)internal_alloc(MBlockScopedBuf, 20);
  EXPECT_NE(p2, (char*)0);
  EXPECT_NE(p2, p);
  for (int i = 0; i < 10; i++) {
    p[i] = 42;
  }
  for (int i = 0; i < 20; i++) {
    ((char*)p2)[i] = 42;
  }
  internal_free(p);
  internal_free(p2);
}

TEST(Mman, User) {
  ThreadState *thr = cur_thread();
  uptr pc = 0;
  char *p = (char*)user_alloc(thr, pc, 10);
  EXPECT_NE(p, (char*)0);
  char *p2 = (char*)user_alloc(thr, pc, 20);
  EXPECT_NE(p2, (char*)0);
  EXPECT_NE(p2, p);
  EXPECT_EQ(10U, user_alloc_usable_size(p));
  EXPECT_EQ(20U, user_alloc_usable_size(p2));
  user_free(thr, pc, p);
  user_free(thr, pc, p2);
}

TEST(Mman, UserRealloc) {
  ThreadState *thr = cur_thread();
  uptr pc = 0;
  {
    void *p = user_realloc(thr, pc, 0, 0);
    // Realloc(NULL, N) is equivalent to malloc(N), thus must return
    // non-NULL pointer.
    EXPECT_NE(p, (void*)0);
    user_free(thr, pc, p);
  }
  {
    void *p = user_realloc(thr, pc, 0, 100);
    EXPECT_NE(p, (void*)0);
    memset(p, 0xde, 100);
    user_free(thr, pc, p);
  }
  {
    void *p = user_alloc(thr, pc, 100);
    EXPECT_NE(p, (void*)0);
    memset(p, 0xde, 100);
    // Realloc(P, 0) is equivalent to free(P) and returns NULL.
    void *p2 = user_realloc(thr, pc, p, 0);
    EXPECT_EQ(p2, (void*)0);
  }
  {
    void *p = user_realloc(thr, pc, 0, 100);
    EXPECT_NE(p, (void*)0);
    memset(p, 0xde, 100);
    void *p2 = user_realloc(thr, pc, p, 10000);
    EXPECT_NE(p2, (void*)0);
    for (int i = 0; i < 100; i++)
      EXPECT_EQ(((char*)p2)[i], (char)0xde);
    memset(p2, 0xde, 10000);
    user_free(thr, pc, p2);
  }
  {
    void *p = user_realloc(thr, pc, 0, 10000);
    EXPECT_NE(p, (void*)0);
    memset(p, 0xde, 10000);
    void *p2 = user_realloc(thr, pc, p, 10);
    EXPECT_NE(p2, (void*)0);
    for (int i = 0; i < 10; i++)
      EXPECT_EQ(((char*)p2)[i], (char)0xde);
    user_free(thr, pc, p2);
  }
}

TEST(Mman, UsableSize) {
  ThreadState *thr = cur_thread();
  uptr pc = 0;
  char *p = (char*)user_alloc(thr, pc, 10);
  char *p2 = (char*)user_alloc(thr, pc, 20);
  EXPECT_EQ(0U, user_alloc_usable_size(NULL));
  EXPECT_EQ(10U, user_alloc_usable_size(p));
  EXPECT_EQ(20U, user_alloc_usable_size(p2));
  user_free(thr, pc, p);
  user_free(thr, pc, p2);
  EXPECT_EQ(0U, user_alloc_usable_size((void*)0x4123));
}

TEST(Mman, Stats) {
  ThreadState *thr = cur_thread();

  uptr alloc0 = __sanitizer_get_current_allocated_bytes();
  uptr heap0 = __sanitizer_get_heap_size();
  uptr free0 = __sanitizer_get_free_bytes();
  uptr unmapped0 = __sanitizer_get_unmapped_bytes();

  EXPECT_EQ(10U, __sanitizer_get_estimated_allocated_size(10));
  EXPECT_EQ(20U, __sanitizer_get_estimated_allocated_size(20));
  EXPECT_EQ(100U, __sanitizer_get_estimated_allocated_size(100));

  char *p = (char*)user_alloc(thr, 0, 10);
  EXPECT_TRUE(__sanitizer_get_ownership(p));
  EXPECT_EQ(10U, __sanitizer_get_allocated_size(p));

  EXPECT_EQ(alloc0 + 16, __sanitizer_get_current_allocated_bytes());
  EXPECT_GE(__sanitizer_get_heap_size(), heap0);
  EXPECT_EQ(free0, __sanitizer_get_free_bytes());
  EXPECT_EQ(unmapped0, __sanitizer_get_unmapped_bytes());

  user_free(thr, 0, p);

  EXPECT_EQ(alloc0, __sanitizer_get_current_allocated_bytes());
  EXPECT_GE(__sanitizer_get_heap_size(), heap0);
  EXPECT_EQ(free0, __sanitizer_get_free_bytes());
  EXPECT_EQ(unmapped0, __sanitizer_get_unmapped_bytes());
}

TEST(Mman, Valloc) {
  ThreadState *thr = cur_thread();
  uptr page_size = GetPageSizeCached();

  void *p = user_valloc(thr, 0, 100);
  EXPECT_NE(p, (void*)0);
  user_free(thr, 0, p);

  p = user_pvalloc(thr, 0, 100);
  EXPECT_NE(p, (void*)0);
  user_free(thr, 0, p);

  p = user_pvalloc(thr, 0, 0);
  EXPECT_NE(p, (void*)0);
  EXPECT_EQ(page_size, __sanitizer_get_allocated_size(p));
  user_free(thr, 0, p);

  EXPECT_DEATH(p = user_pvalloc(thr, 0, (uptr)-(page_size - 1)),
               "allocator is terminating the process instead of returning 0");
  EXPECT_DEATH(p = user_pvalloc(thr, 0, (uptr)-1),
               "allocator is terminating the process instead of returning 0");
}

#if !SANITIZER_DEBUG
// EXPECT_DEATH clones a thread with 4K stack,
// which is overflown by tsan memory accesses functions in debug mode.

TEST(Mman, CallocOverflow) {
  ThreadState *thr = cur_thread();
  uptr pc = 0;
  size_t kArraySize = 4096;
  volatile size_t kMaxSizeT = std::numeric_limits<size_t>::max();
  volatile size_t kArraySize2 = kMaxSizeT / kArraySize + 10;
  volatile void *p = NULL;
  EXPECT_DEATH(p = user_calloc(thr, pc, kArraySize, kArraySize2),
               "allocator is terminating the process instead of returning 0");
  EXPECT_EQ(0L, p);
}

TEST(Mman, Memalign) {
  ThreadState *thr = cur_thread();

  void *p = user_memalign(thr, 0, 8, 100);
  EXPECT_NE(p, (void*)0);
  user_free(thr, 0, p);

  p = NULL;
  EXPECT_DEATH(p = user_memalign(thr, 0, 7, 100),
               "allocator is terminating the process instead of returning 0");
  EXPECT_EQ(0L, p);
}

TEST(Mman, PosixMemalign) {
  ThreadState *thr = cur_thread();

  void *p = NULL;
  int res = user_posix_memalign(thr, 0, &p, 8, 100);
  EXPECT_NE(p, (void*)0);
  EXPECT_EQ(res, 0);
  user_free(thr, 0, p);

  p = NULL;
  // Alignment is not a power of two, although is a multiple of sizeof(void*).
  EXPECT_DEATH(res = user_posix_memalign(thr, 0, &p, 3 * sizeof(p), 100),
               "allocator is terminating the process instead of returning 0");
  EXPECT_EQ(0L, p);
  // Alignment is not a multiple of sizeof(void*), although is a power of 2.
  EXPECT_DEATH(res = user_posix_memalign(thr, 0, &p, 2, 100),
               "allocator is terminating the process instead of returning 0");
  EXPECT_EQ(0L, p);
}

TEST(Mman, AlignedAlloc) {
  ThreadState *thr = cur_thread();

  void *p = user_aligned_alloc(thr, 0, 8, 64);
  EXPECT_NE(p, (void*)0);
  user_free(thr, 0, p);

  p = NULL;
  // Alignement is not a power of 2.
  EXPECT_DEATH(p = user_aligned_alloc(thr, 0, 7, 100),
               "allocator is terminating the process instead of returning 0");
  EXPECT_EQ(0L, p);
  // Size is not a multiple of alignment.
  EXPECT_DEATH(p = user_aligned_alloc(thr, 0, 8, 100),
               "allocator is terminating the process instead of returning 0");
  EXPECT_EQ(0L, p);
}

#endif

}  // namespace __tsan