summaryrefslogtreecommitdiff
path: root/lib/sanitizer_common/sanitizer_allocator_primary64.h
blob: f2d94a07a523e670359054eeee0fe6c9d8dcf685 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
//===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif

template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;

// SizeClassAllocator64 -- allocator for 64-bit address space.
// The template parameter Params is a class containing the actual parameters.
//
// Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
// If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
// Otherwise SpaceBeg=kSpaceBeg (fixed address).
// kSpaceSize is a power of two.
// At the beginning the entire space is mprotect-ed, then small parts of it
// are mapped on demand.
//
// Region: a part of Space dedicated to a single size class.
// There are kNumClasses Regions of equal size.
//
// UserChunk: a piece of memory returned to user.
// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.

// FreeArray is an array free-d chunks (stored as 4-byte offsets)
//
// A Region looks like this:
// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray

struct SizeClassAllocator64FlagMasks {  //  Bit masks.
  enum {
    kRandomShuffleChunks = 1,
  };
};

template <class Params>
class SizeClassAllocator64 {
 public:
  static const uptr kSpaceBeg = Params::kSpaceBeg;
  static const uptr kSpaceSize = Params::kSpaceSize;
  static const uptr kMetadataSize = Params::kMetadataSize;
  typedef typename Params::SizeClassMap SizeClassMap;
  typedef typename Params::MapUnmapCallback MapUnmapCallback;

  static const bool kRandomShuffleChunks =
      Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;

  typedef SizeClassAllocator64<Params> ThisT;
  typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;

  // When we know the size class (the region base) we can represent a pointer
  // as a 4-byte integer (offset from the region start shifted right by 4).
  typedef u32 CompactPtrT;
  static const uptr kCompactPtrScale = 4;
  CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) {
    return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
  }
  uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) {
    return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
  }

  void Init(s32 release_to_os_interval_ms) {
    uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
    if (kUsingConstantSpaceBeg) {
      CHECK_EQ(kSpaceBeg, reinterpret_cast<uptr>(
                              MmapFixedNoAccess(kSpaceBeg, TotalSpaceSize)));
    } else {
      NonConstSpaceBeg =
          reinterpret_cast<uptr>(MmapNoAccess(TotalSpaceSize));
      CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
    }
    SetReleaseToOSIntervalMs(release_to_os_interval_ms);
    MapWithCallback(SpaceEnd(), AdditionalSize());
  }

  s32 ReleaseToOSIntervalMs() const {
    return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
  }

  void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
    atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
                 memory_order_relaxed);
  }

  void MapWithCallback(uptr beg, uptr size) {
    CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
    MapUnmapCallback().OnMap(beg, size);
  }

  void UnmapWithCallback(uptr beg, uptr size) {
    MapUnmapCallback().OnUnmap(beg, size);
    UnmapOrDie(reinterpret_cast<void *>(beg), size);
  }

  static bool CanAllocate(uptr size, uptr alignment) {
    return size <= SizeClassMap::kMaxSize &&
      alignment <= SizeClassMap::kMaxSize;
  }

  NOINLINE void ReturnToAllocator(AllocatorStats *stat, uptr class_id,
                                  const CompactPtrT *chunks, uptr n_chunks) {
    RegionInfo *region = GetRegionInfo(class_id);
    uptr region_beg = GetRegionBeginBySizeClass(class_id);
    CompactPtrT *free_array = GetFreeArray(region_beg);

    BlockingMutexLock l(&region->mutex);
    uptr old_num_chunks = region->num_freed_chunks;
    uptr new_num_freed_chunks = old_num_chunks + n_chunks;
    EnsureFreeArraySpace(region, region_beg, new_num_freed_chunks);
    for (uptr i = 0; i < n_chunks; i++)
      free_array[old_num_chunks + i] = chunks[i];
    region->num_freed_chunks = new_num_freed_chunks;
    region->n_freed += n_chunks;

    MaybeReleaseToOS(class_id);
  }

  NOINLINE void GetFromAllocator(AllocatorStats *stat, uptr class_id,
                                 CompactPtrT *chunks, uptr n_chunks) {
    RegionInfo *region = GetRegionInfo(class_id);
    uptr region_beg = GetRegionBeginBySizeClass(class_id);
    CompactPtrT *free_array = GetFreeArray(region_beg);

    BlockingMutexLock l(&region->mutex);
    if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
      PopulateFreeArray(stat, class_id, region,
                        n_chunks - region->num_freed_chunks);
      CHECK_GE(region->num_freed_chunks, n_chunks);
    }
    region->num_freed_chunks -= n_chunks;
    uptr base_idx = region->num_freed_chunks;
    for (uptr i = 0; i < n_chunks; i++)
      chunks[i] = free_array[base_idx + i];
    region->n_allocated += n_chunks;
  }


  bool PointerIsMine(const void *p) {
    uptr P = reinterpret_cast<uptr>(p);
    if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
      return P / kSpaceSize == kSpaceBeg / kSpaceSize;
    return P >= SpaceBeg() && P < SpaceEnd();
  }

  uptr GetRegionBegin(const void *p) {
    if (kUsingConstantSpaceBeg)
      return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
    uptr space_beg = SpaceBeg();
    return ((reinterpret_cast<uptr>(p)  - space_beg) & ~(kRegionSize - 1)) +
        space_beg;
  }

  uptr GetRegionBeginBySizeClass(uptr class_id) {
    return SpaceBeg() + kRegionSize * class_id;
  }

  uptr GetSizeClass(const void *p) {
    if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
      return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
    return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
           kNumClassesRounded;
  }

  void *GetBlockBegin(const void *p) {
    uptr class_id = GetSizeClass(p);
    uptr size = ClassIdToSize(class_id);
    if (!size) return nullptr;
    uptr chunk_idx = GetChunkIdx((uptr)p, size);
    uptr reg_beg = GetRegionBegin(p);
    uptr beg = chunk_idx * size;
    uptr next_beg = beg + size;
    if (class_id >= kNumClasses) return nullptr;
    RegionInfo *region = GetRegionInfo(class_id);
    if (region->mapped_user >= next_beg)
      return reinterpret_cast<void*>(reg_beg + beg);
    return nullptr;
  }

  uptr GetActuallyAllocatedSize(void *p) {
    CHECK(PointerIsMine(p));
    return ClassIdToSize(GetSizeClass(p));
  }

  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }

  void *GetMetaData(const void *p) {
    uptr class_id = GetSizeClass(p);
    uptr size = ClassIdToSize(class_id);
    uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
    uptr region_beg = GetRegionBeginBySizeClass(class_id);
    return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
                                    (1 + chunk_idx) * kMetadataSize);
  }

  uptr TotalMemoryUsed() {
    uptr res = 0;
    for (uptr i = 0; i < kNumClasses; i++)
      res += GetRegionInfo(i)->allocated_user;
    return res;
  }

  // Test-only.
  void TestOnlyUnmap() {
    UnmapWithCallback(SpaceBeg(), kSpaceSize + AdditionalSize());
  }

  static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
                           uptr stats_size) {
    for (uptr class_id = 0; class_id < stats_size; class_id++)
      if (stats[class_id] == start)
        stats[class_id] = rss;
  }

  void PrintStats(uptr class_id, uptr rss) {
    RegionInfo *region = GetRegionInfo(class_id);
    if (region->mapped_user == 0) return;
    uptr in_use = region->n_allocated - region->n_freed;
    uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
    Printf(
        "  %02zd (%zd): mapped: %zdK allocs: %zd frees: %zd inuse: %zd "
        "num_freed_chunks %zd"
        " avail: %zd rss: %zdK releases: %zd\n",
        class_id, ClassIdToSize(class_id), region->mapped_user >> 10,
        region->n_allocated, region->n_freed, in_use,
        region->num_freed_chunks, avail_chunks, rss >> 10,
        region->rtoi.num_releases);
  }

  void PrintStats() {
    uptr total_mapped = 0;
    uptr n_allocated = 0;
    uptr n_freed = 0;
    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
      RegionInfo *region = GetRegionInfo(class_id);
      total_mapped += region->mapped_user;
      n_allocated += region->n_allocated;
      n_freed += region->n_freed;
    }
    Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
           "remains %zd\n",
           total_mapped >> 20, n_allocated, n_allocated - n_freed);
    uptr rss_stats[kNumClasses];
    for (uptr class_id = 0; class_id < kNumClasses; class_id++)
      rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
    GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);
    for (uptr class_id = 1; class_id < kNumClasses; class_id++)
      PrintStats(class_id, rss_stats[class_id]);
  }

  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
  // introspection API.
  void ForceLock() {
    for (uptr i = 0; i < kNumClasses; i++) {
      GetRegionInfo(i)->mutex.Lock();
    }
  }

  void ForceUnlock() {
    for (int i = (int)kNumClasses - 1; i >= 0; i--) {
      GetRegionInfo(i)->mutex.Unlock();
    }
  }

  // Iterate over all existing chunks.
  // The allocator must be locked when calling this function.
  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
      RegionInfo *region = GetRegionInfo(class_id);
      uptr chunk_size = ClassIdToSize(class_id);
      uptr region_beg = SpaceBeg() + class_id * kRegionSize;
      for (uptr chunk = region_beg;
           chunk < region_beg + region->allocated_user;
           chunk += chunk_size) {
        // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
        callback(chunk, arg);
      }
    }
  }

  static uptr ClassIdToSize(uptr class_id) {
    return SizeClassMap::Size(class_id);
  }

  static uptr AdditionalSize() {
    return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
                     GetPageSizeCached());
  }

  typedef SizeClassMap SizeClassMapT;
  static const uptr kNumClasses = SizeClassMap::kNumClasses;
  static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;

 private:
  static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
  // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
  // In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
  // elements, but in reality this will not happen. For simplicity we
  // dedicate 1/8 of the region's virtual space to FreeArray.
  static const uptr kFreeArraySize = kRegionSize / 8;

  static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
  uptr NonConstSpaceBeg;
  uptr SpaceBeg() const {
    return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
  }
  uptr SpaceEnd() const { return  SpaceBeg() + kSpaceSize; }
  // kRegionSize must be >= 2^32.
  COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
  // kRegionSize must be <= 2^36, see CompactPtrT.
  COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
  // Call mmap for user memory with at least this size.
  static const uptr kUserMapSize = 1 << 16;
  // Call mmap for metadata memory with at least this size.
  static const uptr kMetaMapSize = 1 << 16;
  // Call mmap for free array memory with at least this size.
  static const uptr kFreeArrayMapSize = 1 << 16;

  atomic_sint32_t release_to_os_interval_ms_;

  struct ReleaseToOsInfo {
    uptr n_freed_at_last_release;
    uptr num_releases;
    u64 last_release_at_ns;
  };

  struct RegionInfo {
    BlockingMutex mutex;
    uptr num_freed_chunks;  // Number of elements in the freearray.
    uptr mapped_free_array;  // Bytes mapped for freearray.
    uptr allocated_user;  // Bytes allocated for user memory.
    uptr allocated_meta;  // Bytes allocated for metadata.
    uptr mapped_user;  // Bytes mapped for user memory.
    uptr mapped_meta;  // Bytes mapped for metadata.
    u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
    uptr n_allocated, n_freed;  // Just stats.
    ReleaseToOsInfo rtoi;
  };
  COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);

  u32 Rand(u32 *state) {  // ANSI C linear congruential PRNG.
    return (*state = *state * 1103515245 + 12345) >> 16;
  }

  u32 RandN(u32 *state, u32 n) { return Rand(state) % n; }  // [0, n)

  void RandomShuffle(u32 *a, u32 n, u32 *rand_state) {
    if (n <= 1) return;
    for (u32 i = n - 1; i > 0; i--)
      Swap(a[i], a[RandN(rand_state, i + 1)]);
  }

  RegionInfo *GetRegionInfo(uptr class_id) {
    CHECK_LT(class_id, kNumClasses);
    RegionInfo *regions =
        reinterpret_cast<RegionInfo *>(SpaceBeg() + kSpaceSize);
    return &regions[class_id];
  }

  uptr GetMetadataEnd(uptr region_beg) {
    return region_beg + kRegionSize - kFreeArraySize;
  }

  uptr GetChunkIdx(uptr chunk, uptr size) {
    if (!kUsingConstantSpaceBeg)
      chunk -= SpaceBeg();

    uptr offset = chunk % kRegionSize;
    // Here we divide by a non-constant. This is costly.
    // size always fits into 32-bits. If the offset fits too, use 32-bit div.
    if (offset >> (SANITIZER_WORDSIZE / 2))
      return offset / size;
    return (u32)offset / (u32)size;
  }

  CompactPtrT *GetFreeArray(uptr region_beg) {
    return reinterpret_cast<CompactPtrT *>(region_beg + kRegionSize -
                                           kFreeArraySize);
  }

  void EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
                            uptr num_freed_chunks) {
    uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
    if (region->mapped_free_array < needed_space) {
      CHECK_LE(needed_space, kFreeArraySize);
      uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
      uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
                             region->mapped_free_array;
      uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
      MapWithCallback(current_map_end, new_map_size);
      region->mapped_free_array = new_mapped_free_array;
    }
  }


  NOINLINE void PopulateFreeArray(AllocatorStats *stat, uptr class_id,
                                  RegionInfo *region, uptr requested_count) {
    // region->mutex is held.
    uptr size = ClassIdToSize(class_id);
    uptr beg_idx = region->allocated_user;
    uptr end_idx = beg_idx + requested_count * size;
    uptr region_beg = GetRegionBeginBySizeClass(class_id);
    if (end_idx > region->mapped_user) {
      if (!kUsingConstantSpaceBeg && region->mapped_user == 0)
        region->rand_state = static_cast<u32>(region_beg >> 12);  // From ASLR.
      // Do the mmap for the user memory.
      uptr map_size = kUserMapSize;
      while (end_idx > region->mapped_user + map_size)
        map_size += kUserMapSize;
      CHECK_GE(region->mapped_user + map_size, end_idx);
      MapWithCallback(region_beg + region->mapped_user, map_size);
      stat->Add(AllocatorStatMapped, map_size);
      region->mapped_user += map_size;
    }
    CompactPtrT *free_array = GetFreeArray(region_beg);
    uptr total_count = (region->mapped_user - beg_idx) / size;
    uptr num_freed_chunks = region->num_freed_chunks;
    EnsureFreeArraySpace(region, region_beg, num_freed_chunks + total_count);
    for (uptr i = 0; i < total_count; i++) {
      uptr chunk = beg_idx + i * size;
      free_array[num_freed_chunks + total_count - 1 - i] =
          PointerToCompactPtr(0, chunk);
    }
    if (kRandomShuffleChunks)
      RandomShuffle(&free_array[num_freed_chunks], total_count,
                    &region->rand_state);
    region->num_freed_chunks += total_count;
    region->allocated_user += total_count * size;
    CHECK_LE(region->allocated_user, region->mapped_user);

    region->allocated_meta += total_count * kMetadataSize;
    if (region->allocated_meta > region->mapped_meta) {
      uptr map_size = kMetaMapSize;
      while (region->allocated_meta > region->mapped_meta + map_size)
        map_size += kMetaMapSize;
      // Do the mmap for the metadata.
      CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
      MapWithCallback(GetMetadataEnd(region_beg) -
                      region->mapped_meta - map_size, map_size);
      region->mapped_meta += map_size;
    }
    CHECK_LE(region->allocated_meta, region->mapped_meta);
    if (region->mapped_user + region->mapped_meta >
        kRegionSize - kFreeArraySize) {
      Printf("%s: Out of memory. Dying. ", SanitizerToolName);
      Printf("The process has exhausted %zuMB for size class %zu.\n",
          kRegionSize / 1024 / 1024, size);
      Die();
    }
  }

  void MaybeReleaseChunkRange(uptr region_beg, uptr chunk_size,
                              CompactPtrT first, CompactPtrT last) {
    uptr beg_ptr = CompactPtrToPointer(region_beg, first);
    uptr end_ptr = CompactPtrToPointer(region_beg, last) + chunk_size;
    ReleaseMemoryPagesToOS(beg_ptr, end_ptr);
  }

  // Attempts to release some RAM back to OS. The region is expected to be
  // locked.
  // Algorithm:
  // * Sort the chunks.
  // * Find ranges fully covered by free-d chunks
  // * Release them to OS with madvise.
  void MaybeReleaseToOS(uptr class_id) {
    RegionInfo *region = GetRegionInfo(class_id);
    const uptr chunk_size = ClassIdToSize(class_id);
    const uptr page_size = GetPageSizeCached();

    uptr n = region->num_freed_chunks;
    if (n * chunk_size < page_size)
      return;  // No chance to release anything.
    if ((region->n_freed - region->rtoi.n_freed_at_last_release) * chunk_size <
        page_size) {
      return;  // Nothing new to release.
    }

    s32 interval_ms = ReleaseToOSIntervalMs();
    if (interval_ms < 0)
      return;

    u64 now_ns = NanoTime();
    if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL > now_ns)
      return;  // Memory was returned recently.
    region->rtoi.last_release_at_ns = now_ns;

    uptr region_beg = GetRegionBeginBySizeClass(class_id);
    CompactPtrT *free_array = GetFreeArray(region_beg);
    SortArray(free_array, n);

    const uptr scaled_chunk_size = chunk_size >> kCompactPtrScale;
    const uptr kScaledGranularity = page_size >> kCompactPtrScale;

    uptr range_beg = free_array[0];
    uptr prev = free_array[0];
    for (uptr i = 1; i < n; i++) {
      uptr chunk = free_array[i];
      CHECK_GT(chunk, prev);
      if (chunk - prev != scaled_chunk_size) {
        CHECK_GT(chunk - prev, scaled_chunk_size);
        if (prev + scaled_chunk_size - range_beg >= kScaledGranularity) {
          MaybeReleaseChunkRange(region_beg, chunk_size, range_beg, prev);
          region->rtoi.n_freed_at_last_release = region->n_freed;
          region->rtoi.num_releases++;
        }
        range_beg = chunk;
      }
      prev = chunk;
    }
  }
};