summaryrefslogtreecommitdiff
path: root/lib/msandr/msandr.cc
blob: 235a1eddd8e4c2a416fc4c938ca95482333d87dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
//===-- msandr.cc ---------------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemorySanitizer.
//
// DynamoRio client for MemorySanitizer.
//
// MemorySanitizer requires that all program code is instrumented. Any memory
// store that can turn an uninitialized value into an initialized value must be
// observed by the tool, otherwise we risk reporting a false UMR.
//
// This also includes any libraries that the program depends on.
//
// In the case when rebuilding all program dependencies with MemorySanitizer is
// problematic, an experimental MSanDR tool (the code you are currently looking
// at) can be used. It is a DynamoRio-based tool that uses dynamic
// instrumentation to
// * Unpoison all memory stores.
// * Unpoison TLS slots used by MemorySanitizer to pass function arguments and
//   return value shadow on anything that looks like a function call or a return
//   from a function.
//
// This tool does not detect the use of uninitialized values in uninstrumented
// libraries. It merely gets rid of false positives by marking all data that
// passes through uninstrumented code as fully initialized.
//===----------------------------------------------------------------------===//

#include <dr_api.h>
#include <drutil.h>
#include <drmgr.h>
#include <drsyscall.h>

#include <sys/mman.h>

#include <algorithm>
#include <string>
#include <set>
#include <vector>
#include <string.h>

using std::string;

#define TESTALL(mask, var) (((mask) & (var)) == (mask))
#define TESTANY(mask, var) (((mask) & (var)) != 0)

#define CHECK_IMPL(condition, file, line)                                      \
  do {                                                                         \
    if (!(condition)) {                                                        \
      dr_printf("Check failed: `%s`\nat %s:%d\n", #condition, file, line);     \
      dr_abort();                                                              \
    }                                                                          \
  } while (0) // TODO: stacktrace

#define CHECK(condition) CHECK_IMPL(condition, __FILE__, __LINE__)

#define VERBOSITY 0

namespace {

class ModuleData {
public:
  ModuleData();
  ModuleData(const module_data_t *info);
  // Yes, we want default copy, assign, and dtor semantics.

public:
  app_pc start_;
  app_pc end_;
  // Full path to the module.
  string path_;
  module_handle_t handle_;
  bool should_instrument_;
  bool executed_;
};

string g_app_path;

int msan_retval_tls_offset;
int msan_param_tls_offset;

// A vector of loaded modules sorted by module bounds.  We lookup the current PC
// in here from the bb event.  This is better than an rb tree because the lookup
// is faster and the bb event occurs far more than the module load event.
std::vector<ModuleData> g_module_list;

ModuleData::ModuleData()
    : start_(NULL), end_(NULL), path_(""), handle_(NULL),
      should_instrument_(false), executed_(false) {
}

ModuleData::ModuleData(const module_data_t *info)
    : start_(info->start), end_(info->end), path_(info->full_path),
      handle_(info->handle),
      // We'll check the black/white lists later and adjust this.
      should_instrument_(true), executed_(false) {
}

int(*__msan_get_retval_tls_offset)();
int(*__msan_get_param_tls_offset)();

void InitializeMSanCallbacks() {
  module_data_t *app = dr_lookup_module_by_name(dr_get_application_name());
  if (!app) {
    dr_printf("%s - oops, dr_lookup_module_by_name failed!\n",
              dr_get_application_name());
    CHECK(app);
  }
  g_app_path = app->full_path;

  const char *callback_name = "__msan_get_retval_tls_offset";
  __msan_get_retval_tls_offset =
      (int(*)()) dr_get_proc_address(app->handle, callback_name);
  if (__msan_get_retval_tls_offset == NULL) {
    dr_printf("Couldn't find `%s` in %s\n", callback_name, app->full_path);
    CHECK(__msan_get_retval_tls_offset);
  }

  callback_name = "__msan_get_param_tls_offset";
  __msan_get_param_tls_offset =
      (int(*)()) dr_get_proc_address(app->handle, callback_name);
  if (__msan_get_param_tls_offset == NULL) {
    dr_printf("Couldn't find `%s` in %s\n", callback_name, app->full_path);
    CHECK(__msan_get_param_tls_offset);
  }
}

#define MEM_TO_SHADOW(mem) ((mem) & ~0x400000000000ULL)

// FIXME: Handle absolute addresses and PC-relative addresses.
// FIXME: Handle TLS accesses via FS or GS.  DR assumes all other segments have
// a zero base anyway.
bool OperandIsInteresting(opnd_t opnd) {
  return (opnd_is_base_disp(opnd) && opnd_get_segment(opnd) != DR_SEG_FS &&
          opnd_get_segment(opnd) != DR_SEG_GS);
}

bool WantToInstrument(instr_t *instr) {
  // TODO: skip push instructions?
  switch (instr_get_opcode(instr)) {
    // FIXME: support the instructions excluded below:
  case OP_rep_cmps:
    // f3 a6    rep cmps %ds:(%rsi) %es:(%rdi) %rsi %rdi %rcx -> %rsi %rdi %rcx
    return false;
  }

  // Labels appear due to drutil_expand_rep_string()
  if (instr_is_label(instr))
    return false;

  CHECK(instr_ok_to_mangle(instr) == true);

  if (instr_writes_memory(instr)) {
    for (int d = 0; d < instr_num_dsts(instr); d++) {
      opnd_t op = instr_get_dst(instr, d);
      if (OperandIsInteresting(op))
        return true;
    }
  }

  return false;
}

#define PRE(at, what) instrlist_meta_preinsert(bb, at, INSTR_CREATE_##what);
#define PREF(at, what) instrlist_meta_preinsert(bb, at, what);

void InstrumentMops(void *drcontext, instrlist_t *bb, instr_t *instr, opnd_t op,
                    bool is_write) {
  bool need_to_restore_eflags = false;
  uint flags = instr_get_arith_flags(instr);
  // TODO: do something smarter with flags and spills in general?
  // For example, spill them only once for a sequence of instrumented
  // instructions that don't change/read flags.

  if (!TESTALL(EFLAGS_WRITE_6, flags) || TESTANY(EFLAGS_READ_6, flags)) {
    if (VERBOSITY > 1)
      dr_printf("Spilling eflags...\n");
    need_to_restore_eflags = true;
    // TODO: Maybe sometimes don't need to 'seto'.
    // TODO: Maybe sometimes don't want to spill XAX here?
    // TODO: No need to spill XAX here if XAX is not used in the BB.
    dr_save_reg(drcontext, bb, instr, DR_REG_XAX, SPILL_SLOT_1);
    dr_save_arith_flags_to_xax(drcontext, bb, instr);
    dr_save_reg(drcontext, bb, instr, DR_REG_XAX, SPILL_SLOT_3);
    dr_restore_reg(drcontext, bb, instr, DR_REG_XAX, SPILL_SLOT_1);
  }

#if 0
  dr_printf("==DRMSAN== DEBUG: %d %d %d %d %d %d\n",
            opnd_is_memory_reference(op), opnd_is_base_disp(op),
            opnd_is_base_disp(op) ? opnd_get_index(op) : -1,
            opnd_is_far_memory_reference(op), opnd_is_reg_pointer_sized(op),
            opnd_is_base_disp(op) ? opnd_get_disp(op) : -1);
#endif

  reg_id_t R1;
  bool address_in_R1 = false;
  if (opnd_is_base_disp(op) && opnd_get_index(op) == DR_REG_NULL &&
      opnd_get_disp(op) == 0) {
    // If this is a simple access with no offset or index, we can just use the
    // base for R1.
    address_in_R1 = true;
    R1 = opnd_get_base(op);
  } else {
    // Otherwise, we need to compute the addr into R1.
    // TODO: reuse some spare register? e.g. r15 on x64
    // TODO: might be used as a non-mem-ref register?
    R1 = DR_REG_XAX;
  }
  CHECK(reg_is_pointer_sized(R1)); // otherwise R2 may be wrong.

  // Pick R2 that's not R1 or used by the operand.  It's OK if the instr uses
  // R2 elsewhere, since we'll restore it before instr.
  reg_id_t GPR_TO_USE_FOR_R2[] = {
    DR_REG_XAX, DR_REG_XBX, DR_REG_XCX, DR_REG_XDX
    // Don't forget to update the +4 below if you add anything else!
  };
  std::set<reg_id_t> unused_registers(GPR_TO_USE_FOR_R2, GPR_TO_USE_FOR_R2 + 4);
  unused_registers.erase(R1);
  for (int j = 0; j < opnd_num_regs_used(op); j++) {
    unused_registers.erase(opnd_get_reg_used(op, j));
  }

  CHECK(unused_registers.size() > 0);
  reg_id_t R2 = *unused_registers.begin();
  CHECK(R1 != R2);

  // Save the current values of R1 and R2.
  dr_save_reg(drcontext, bb, instr, R1, SPILL_SLOT_1);
  // TODO: Something smarter than spilling a "fixed" register R2?
  dr_save_reg(drcontext, bb, instr, R2, SPILL_SLOT_2);

  if (!address_in_R1)
    CHECK(drutil_insert_get_mem_addr(drcontext, bb, instr, op, R1, R2));
  PRE(instr, mov_imm(drcontext, opnd_create_reg(R2),
                     OPND_CREATE_INT64(0xffffbfffffffffff)));
  PRE(instr, and(drcontext, opnd_create_reg(R1), opnd_create_reg(R2)));
  // There is no mov_st of a 64-bit immediate, so...
  opnd_size_t op_size = opnd_get_size(op);
  CHECK(op_size != OPSZ_NA);
  uint access_size = opnd_size_in_bytes(op_size);
  if (access_size <= 4) {
    PRE(instr,
        mov_st(drcontext, opnd_create_base_disp(R1, DR_REG_NULL, 0, 0, op_size),
               opnd_create_immed_int((ptr_int_t) 0, op_size)));
  } else {
    // FIXME: tail?
    for (uint ofs = 0; ofs < access_size; ofs += 4) {
      PRE(instr,
          mov_st(drcontext, OPND_CREATE_MEM32(R1, ofs), OPND_CREATE_INT32(0)));
    }
  }

  // Restore the registers and flags.
  dr_restore_reg(drcontext, bb, instr, R1, SPILL_SLOT_1);
  dr_restore_reg(drcontext, bb, instr, R2, SPILL_SLOT_2);

  if (need_to_restore_eflags) {
    if (VERBOSITY > 1)
      dr_printf("Restoring eflags\n");
    // TODO: Check if it's reverse to the dr_restore_reg above and optimize.
    dr_save_reg(drcontext, bb, instr, DR_REG_XAX, SPILL_SLOT_1);
    dr_restore_reg(drcontext, bb, instr, DR_REG_XAX, SPILL_SLOT_3);
    dr_restore_arith_flags_from_xax(drcontext, bb, instr);
    dr_restore_reg(drcontext, bb, instr, DR_REG_XAX, SPILL_SLOT_1);
  }

  // The original instruction is left untouched. The above instrumentation is just
  // a prefix.
}

void InstrumentReturn(void *drcontext, instrlist_t *bb, instr_t *instr) {
  dr_save_reg(drcontext, bb, instr, DR_REG_XAX, SPILL_SLOT_1);

  // Clobbers nothing except xax.
  bool res =
      dr_insert_get_seg_base(drcontext, bb, instr, DR_SEG_FS, DR_REG_XAX);
  CHECK(res);

  // TODO: unpoison more bytes?
  PRE(instr,
      mov_st(drcontext, OPND_CREATE_MEM64(DR_REG_XAX, msan_retval_tls_offset),
             OPND_CREATE_INT32(0)));

  dr_restore_reg(drcontext, bb, instr, DR_REG_XAX, SPILL_SLOT_1);

  // The original instruction is left untouched. The above instrumentation is just
  // a prefix.
}

void InstrumentIndirectBranch(void *drcontext, instrlist_t *bb,
                              instr_t *instr) {
  dr_save_reg(drcontext, bb, instr, DR_REG_XAX, SPILL_SLOT_1);

  // Clobbers nothing except xax.
  bool res =
      dr_insert_get_seg_base(drcontext, bb, instr, DR_SEG_FS, DR_REG_XAX);
  CHECK(res);

  // TODO: unpoison more bytes?
  for (int i = 0; i < 6; ++i) {
    PRE(instr,
        mov_st(drcontext, OPND_CREATE_MEMPTR(DR_REG_XAX, msan_param_tls_offset +
                                                         i * sizeof(void *)),
               OPND_CREATE_INT32(0)));
  }

  dr_restore_reg(drcontext, bb, instr, DR_REG_XAX, SPILL_SLOT_1);

  // The original instruction is left untouched. The above instrumentation is just
  // a prefix.
}

// For use with binary search.  Modules shouldn't overlap, so we shouldn't have
// to look at end_.  If that can happen, we won't support such an application.
bool ModuleDataCompareStart(const ModuleData &left, const ModuleData &right) {
  return left.start_ < right.start_;
}

// Look up the module containing PC.  Should be relatively fast, as its called
// for each bb instrumentation.
ModuleData *LookupModuleByPC(app_pc pc) {
  ModuleData fake_mod_data;
  fake_mod_data.start_ = pc;
  std::vector<ModuleData>::iterator it =
      lower_bound(g_module_list.begin(), g_module_list.end(), fake_mod_data,
                  ModuleDataCompareStart);
  // if (it == g_module_list.end())
  //   return NULL;
  if (it == g_module_list.end() || pc < it->start_)
    --it;
  CHECK(it->start_ <= pc);
  if (pc >= it->end_) {
    // We're past the end of this module.  We shouldn't be in the next module,
    // or lower_bound lied to us.
    ++it;
    CHECK(it == g_module_list.end() || pc < it->start_);
    return NULL;
  }

  // OK, we found the module.
  return &*it;
}

bool ShouldInstrumentNonModuleCode() { return true; }

bool ShouldInstrumentModule(ModuleData *mod_data) {
  // TODO(rnk): Flags for blacklist would get wired in here.
  generic_func_t p =
      dr_get_proc_address(mod_data->handle_, "__msan_track_origins");
  return !p;
}

bool ShouldInstrumentPc(app_pc pc, ModuleData **pmod_data) {
  ModuleData *mod_data = LookupModuleByPC(pc);
  if (pmod_data)
    *pmod_data = mod_data;
  if (mod_data != NULL) {
    // This module is on a blacklist.
    if (!mod_data->should_instrument_) {
      return false;
    }
  } else if (!ShouldInstrumentNonModuleCode()) {
    return false;
  }
  return true;
}

// TODO(rnk): Make sure we instrument after __msan_init.
dr_emit_flags_t
event_basic_block_app2app(void *drcontext, void *tag, instrlist_t *bb,
                          bool for_trace, bool translating) {
  app_pc pc = dr_fragment_app_pc(tag);

  if (ShouldInstrumentPc(pc, NULL))
    CHECK(drutil_expand_rep_string(drcontext, bb));

  return DR_EMIT_PERSISTABLE;
}

dr_emit_flags_t event_basic_block(void *drcontext, void *tag, instrlist_t *bb,
                                  bool for_trace, bool translating) {
  app_pc pc = dr_fragment_app_pc(tag);
  ModuleData *mod_data;

  if (!ShouldInstrumentPc(pc, &mod_data))
    return DR_EMIT_PERSISTABLE;

  if (VERBOSITY > 1)
    dr_printf("============================================================\n");
  if (VERBOSITY > 0) {
    string mod_path = (mod_data ? mod_data->path_ : "<no module, JITed?>");
    if (mod_data && !mod_data->executed_) {
      mod_data->executed_ = true; // Nevermind this race.
      dr_printf("Executing from new module: %s\n", mod_path.c_str());
    }
    dr_printf("BB to be instrumented: %p [from %s]; translating = %s\n", pc,
        mod_path.c_str(), translating ? "true" : "false");
    if (mod_data) {
      // Match standard sanitizer trace format for free symbols.
      // #0 0x7f6e35cf2e45  (/blah/foo.so+0x11fe45)
      dr_printf(" #0 %p (%s+%p)\n", pc, mod_data->path_.c_str(),
          pc - mod_data->start_);
    }
  }
  if (VERBOSITY > 1) {
    instrlist_disassemble(drcontext, pc, bb, STDOUT);
    instr_t *instr;
    for (instr = instrlist_first(bb); instr; instr = instr_get_next(instr)) {
      dr_printf("opcode: %d\n", instr_get_opcode(instr));
    }
  }

  for (instr_t *i = instrlist_first(bb); i != NULL; i = instr_get_next(i)) {
    int opcode = instr_get_opcode(i);
    if (opcode == OP_ret || opcode == OP_ret_far) {
      InstrumentReturn(drcontext, bb, i);
      continue;
    }

    // These instructions hopefully cover all cases where control is transferred
    // to a function in a different module (we only care about calls into
    // compiler-instrumented modules).
    // * call_ind is used for normal indirect calls.
    // * jmp_ind is used for indirect tail calls, and calls through PLT (PLT
    //   stub includes a jump to an address from GOT).
    if (opcode == OP_call_ind || opcode == OP_call_far_ind ||
        opcode == OP_jmp_ind || opcode == OP_jmp_far_ind) {
      InstrumentIndirectBranch(drcontext, bb, i);
      continue;
    }

    if (!WantToInstrument(i))
      continue;

    if (VERBOSITY > 1) {
      app_pc orig_pc = dr_fragment_app_pc(tag);
      uint flags = instr_get_arith_flags(i);
      dr_printf("+%d -> to be instrumented! [opcode=%d, flags = 0x%08X]\n",
          instr_get_app_pc(i) - orig_pc, instr_get_opcode(i), flags);
    }

    if (instr_writes_memory(i)) {
      // Instrument memory writes
      // bool instrumented_anything = false;
      for (int d = 0; d < instr_num_dsts(i); d++) {
        opnd_t op = instr_get_dst(i, d);
        if (!OperandIsInteresting(op))
          continue;

        // CHECK(!instrumented_anything);
        // instrumented_anything = true;
        InstrumentMops(drcontext, bb, i, op, true);
        break; // only instrumenting the first dst
      }
    }
  }

// TODO: optimize away redundant restore-spill pairs?

  if (VERBOSITY > 1) {
    pc = dr_fragment_app_pc(tag);
    dr_printf("\nFinished instrumenting dynamorio_basic_block(PC=" PFX ")\n", pc);
    instrlist_disassemble(drcontext, pc, bb, STDOUT);
  }
  return DR_EMIT_PERSISTABLE;
}

void event_module_load(void *drcontext, const module_data_t *info,
                       bool loaded) {
  // Insert the module into the list while maintaining the ordering.
  ModuleData mod_data(info);
  std::vector<ModuleData>::iterator it =
      upper_bound(g_module_list.begin(), g_module_list.end(), mod_data,
                  ModuleDataCompareStart);
  it = g_module_list.insert(it, mod_data);
  // Check if we should instrument this module.
  it->should_instrument_ = ShouldInstrumentModule(&*it);
  dr_module_set_should_instrument(info->handle, it->should_instrument_);

  if (VERBOSITY > 0)
    dr_printf("==DRMSAN== Loaded module: %s [%p...%p], instrumentation is %s\n",
        info->full_path, info->start, info->end,
        it->should_instrument_ ? "on" : "off");
}

void event_module_unload(void *drcontext, const module_data_t *info) {
  if (VERBOSITY > 0)
    dr_printf("==DRMSAN== Unloaded module: %s [%p...%p]\n", info->full_path,
        info->start, info->end);

  // Remove the module from the list.
  ModuleData mod_data(info);
  std::vector<ModuleData>::iterator it =
      lower_bound(g_module_list.begin(), g_module_list.end(), mod_data,
                  ModuleDataCompareStart);
  // It's a bug if we didn't actually find the module.
  CHECK(it != g_module_list.end() && it->start_ == mod_data.start_ &&
        it->end_ == mod_data.end_ && it->path_ == mod_data.path_);
  g_module_list.erase(it);
}

void event_exit() {
  if (VERBOSITY > 0)
    dr_printf("==DRMSAN== DONE\n");
}

bool event_filter_syscall(void *drcontext, int sysnum) {
  // FIXME: only intercept syscalls with memory effects.
  return true; /* intercept everything */
}

bool drsys_iter_memarg_cb(drsys_arg_t *arg, void *user_data) {
  CHECK(arg->valid);

  if (arg->pre)
    return true;
  if (arg->mode != DRSYS_PARAM_OUT)
    return true;

  size_t sz = arg->size;

  if (sz > 0xFFFFFFFF) {
    drmf_status_t res;
    drsys_syscall_t *syscall = (drsys_syscall_t *)user_data;
    const char *name;
    res = drsys_syscall_name(syscall, &name);
    CHECK(res == DRMF_SUCCESS);

    dr_printf("SANITY: syscall '%s' arg %d writes %llu bytes memory?!"
              " Clipping to %llu.\n",
              name, arg->ordinal, (unsigned long long) sz,
              (unsigned long long)(sz & 0xFFFFFFFF));
  }

  void *p = (void *)MEM_TO_SHADOW((ptr_uint_t) arg->start_addr);
  memset(p, 0, sz);

  return true; /* keep going */
}

bool event_pre_syscall(void *drcontext, int sysnum) {
  drsys_syscall_t *syscall;
  drsys_sysnum_t sysnum_full;
  bool known;
  drsys_param_type_t ret_type;
  drmf_status_t res;
  const char *name;

  res = drsys_cur_syscall(drcontext, &syscall);
  CHECK(res == DRMF_SUCCESS);

  res = drsys_syscall_number(syscall, &sysnum_full);
  CHECK(res == DRMF_SUCCESS);
  CHECK(sysnum == sysnum_full.number);

  res = drsys_syscall_is_known(syscall, &known);
  CHECK(res == DRMF_SUCCESS);

  res = drsys_syscall_name(syscall, &name);
  CHECK(res == DRMF_SUCCESS);

  res = drsys_syscall_return_type(syscall, &ret_type);
  CHECK(res == DRMF_SUCCESS);
  CHECK(ret_type != DRSYS_TYPE_INVALID);
  CHECK(!known || ret_type != DRSYS_TYPE_UNKNOWN);

  res = drsys_iterate_memargs(drcontext, drsys_iter_memarg_cb, NULL);
  CHECK(res == DRMF_SUCCESS);

  return true;
}

void event_post_syscall(void *drcontext, int sysnum) {
  drsys_syscall_t *syscall;
  drsys_sysnum_t sysnum_full;
  bool success = false;
  drmf_status_t res;

  res = drsys_cur_syscall(drcontext, &syscall);
  CHECK(res == DRMF_SUCCESS);

  res = drsys_syscall_number(syscall, &sysnum_full);
  CHECK(res == DRMF_SUCCESS);
  CHECK(sysnum == sysnum_full.number);

  res = drsys_syscall_succeeded(syscall, dr_syscall_get_result(drcontext),
                                &success);
  CHECK(res == DRMF_SUCCESS);

  if (success) {
    res =
        drsys_iterate_memargs(drcontext, drsys_iter_memarg_cb, (void *)syscall);
    CHECK(res == DRMF_SUCCESS);
  }
}

} // namespace

DR_EXPORT void dr_init(client_id_t id) {
  drmf_status_t res;

  drmgr_init();
  drutil_init();

  string app_name = dr_get_application_name();
  // This blacklist will still run these apps through DR's code cache.  On the
  // other hand, we are able to follow children of these apps.
  // FIXME: Once DR has detach, we could just detach here.  Alternatively,
  // if DR had a fork or exec hook to let us decide there, that would be nice.
  // FIXME: make the blacklist cmd-adjustable.
  if (app_name == "python" || app_name == "python2.7" || app_name == "bash" ||
      app_name == "sh" || app_name == "true" || app_name == "exit" ||
      app_name == "yes" || app_name == "echo")
    return;

  drsys_options_t ops;
  memset(&ops, 0, sizeof(ops));
  ops.struct_size = sizeof(ops);
  ops.analyze_unknown_syscalls = false;

  res = drsys_init(id, &ops);
  CHECK(res == DRMF_SUCCESS);

  dr_register_filter_syscall_event(event_filter_syscall);
  drmgr_register_pre_syscall_event(event_pre_syscall);
  drmgr_register_post_syscall_event(event_post_syscall);
  res = drsys_filter_all_syscalls();
  CHECK(res == DRMF_SUCCESS);

  InitializeMSanCallbacks();

  // FIXME: the shadow is initialized earlier when DR calls one of our wrapper
  // functions. This may change one day.
  // TODO: make this more robust.

  void *drcontext = dr_get_current_drcontext();

  dr_switch_to_app_state(drcontext);
  msan_retval_tls_offset = __msan_get_retval_tls_offset();
  msan_param_tls_offset = __msan_get_param_tls_offset();
  dr_switch_to_dr_state(drcontext);
  if (VERBOSITY > 0) {
    dr_printf("__msan_retval_tls offset: %d\n", msan_retval_tls_offset);
    dr_printf("__msan_param_tls offset: %d\n", msan_param_tls_offset);
  }

  // Standard DR events.
  dr_register_exit_event(event_exit);

  drmgr_priority_t priority = {
    sizeof(priority), /* size of struct */
    "msandr",         /* name of our operation */
    NULL,             /* optional name of operation we should precede */
    NULL,             /* optional name of operation we should follow */
    0
  };                  /* numeric priority */

  drmgr_register_bb_app2app_event(event_basic_block_app2app, &priority);
  drmgr_register_bb_instru2instru_event(event_basic_block, &priority);
  drmgr_register_module_load_event(event_module_load);
  drmgr_register_module_unload_event(event_module_unload);
  if (VERBOSITY > 0)
    dr_printf("==MSANDR== Starting!\n");
}