summaryrefslogtreecommitdiff
path: root/lib/msan/msan_allocator.cc
blob: cabc94c0245c582f2d02881153727655cabb5dc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//===-- msan_allocator.cc --------------------------- ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemorySanitizer.
//
// MemorySanitizer allocator.
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "msan.h"
#include "msan_allocator.h"
#include "msan_chained_origin_depot.h"
#include "msan_origin.h"
#include "msan_thread.h"

namespace __msan {

struct Metadata {
  uptr requested_size;
};

struct MsanMapUnmapCallback {
  void OnMap(uptr p, uptr size) const {}
  void OnUnmap(uptr p, uptr size) const {
    __msan_unpoison((void *)p, size);

    // We are about to unmap a chunk of user memory.
    // Mark the corresponding shadow memory as not needed.
    FlushUnneededShadowMemory(MEM_TO_SHADOW(p), size);
    if (__msan_get_track_origins())
      FlushUnneededShadowMemory(MEM_TO_ORIGIN(p), size);
  }
};

static const uptr kAllocatorSpace = 0x600000000000ULL;
static const uptr kAllocatorSize   = 0x80000000000;  // 8T.
static const uptr kMetadataSize  = sizeof(Metadata);
static const uptr kMaxAllowedMallocSize = 8UL << 30;

typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, kMetadataSize,
                             DefaultSizeClassMap,
                             MsanMapUnmapCallback> PrimaryAllocator;
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<MsanMapUnmapCallback> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
                          SecondaryAllocator> Allocator;

static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static SpinMutex fallback_mutex;

static int inited = 0;

static inline void Init() {
  if (inited) return;
  __msan_init();
  inited = true;  // this must happen before any threads are created.
  allocator.Init();
}

AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) {
  CHECK(ms);
  CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
  return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
}

void MsanThreadLocalMallocStorage::CommitBack() {
  allocator.SwallowCache(GetAllocatorCache(this));
}

static void *MsanAllocate(StackTrace *stack, uptr size, uptr alignment,
                          bool zeroise) {
  Init();
  if (size > kMaxAllowedMallocSize) {
    Report("WARNING: MemorySanitizer failed to allocate %p bytes\n",
           (void *)size);
    return AllocatorReturnNull();
  }
  MsanThread *t = GetCurrentThread();
  void *allocated;
  if (t) {
    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
    allocated = allocator.Allocate(cache, size, alignment, false);
  } else {
    SpinMutexLock l(&fallback_mutex);
    AllocatorCache *cache = &fallback_allocator_cache;
    allocated = allocator.Allocate(cache, size, alignment, false);
  }
  Metadata *meta =
      reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
  meta->requested_size = size;
  if (zeroise) {
    __msan_clear_and_unpoison(allocated, size);
  } else if (flags()->poison_in_malloc) {
    __msan_poison(allocated, size);
    if (__msan_get_track_origins()) {
      u32 stack_id = StackDepotPut(*stack);
      CHECK(stack_id);
      u32 id;
      ChainedOriginDepotPut(stack_id, Origin::kHeapRoot, &id);
      __msan_set_origin(allocated, size, Origin(id, 1).raw_id());
    }
  }
  MSAN_MALLOC_HOOK(allocated, size);
  return allocated;
}

void MsanDeallocate(StackTrace *stack, void *p) {
  CHECK(p);
  Init();
  MSAN_FREE_HOOK(p);
  Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
  uptr size = meta->requested_size;
  meta->requested_size = 0;
  // This memory will not be reused by anyone else, so we are free to keep it
  // poisoned.
  if (flags()->poison_in_free) {
    __msan_poison(p, size);
    if (__msan_get_track_origins()) {
      u32 stack_id = StackDepotPut(*stack);
      CHECK(stack_id);
      u32 id;
      ChainedOriginDepotPut(stack_id, Origin::kHeapRoot, &id);
      __msan_set_origin(p, size, Origin(id, 1).raw_id());
    }
  }
  MsanThread *t = GetCurrentThread();
  if (t) {
    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
    allocator.Deallocate(cache, p);
  } else {
    SpinMutexLock l(&fallback_mutex);
    AllocatorCache *cache = &fallback_allocator_cache;
    allocator.Deallocate(cache, p);
  }
}

void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size,
                     uptr alignment, bool zeroise) {
  if (!old_p)
    return MsanAllocate(stack, new_size, alignment, zeroise);
  if (!new_size) {
    MsanDeallocate(stack, old_p);
    return 0;
  }
  Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
  uptr old_size = meta->requested_size;
  uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
  if (new_size <= actually_allocated_size) {
    // We are not reallocating here.
    meta->requested_size = new_size;
    if (new_size > old_size)
      __msan_poison((char*)old_p + old_size, new_size - old_size);
    return old_p;
  }
  uptr memcpy_size = Min(new_size, old_size);
  void *new_p = MsanAllocate(stack, new_size, alignment, zeroise);
  // Printf("realloc: old_size %zd new_size %zd\n", old_size, new_size);
  if (new_p) {
    __msan_memcpy(new_p, old_p, memcpy_size);
    MsanDeallocate(stack, old_p);
  }
  return new_p;
}

static uptr AllocationSize(const void *p) {
  if (p == 0) return 0;
  const void *beg = allocator.GetBlockBegin(p);
  if (beg != p) return 0;
  Metadata *b = (Metadata *)allocator.GetMetaData(p);
  return b->requested_size;
}

}  // namespace __msan

using namespace __msan;

uptr __sanitizer_get_current_allocated_bytes() {
  uptr stats[AllocatorStatCount];
  allocator.GetStats(stats);
  return stats[AllocatorStatAllocated];
}

uptr __sanitizer_get_heap_size() {
  uptr stats[AllocatorStatCount];
  allocator.GetStats(stats);
  return stats[AllocatorStatMapped];
}

uptr __sanitizer_get_free_bytes() { return 1; }

uptr __sanitizer_get_unmapped_bytes() { return 1; }

uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }

int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }

uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }