summaryrefslogtreecommitdiff
path: root/lib/lsan/lsan_common.cc
blob: a42469b03168096183db4ac898e5c3137f539551 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
//=-- lsan_common.cc ------------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
// Implementation of common leak checking functionality.
//
//===----------------------------------------------------------------------===//

#include "lsan_common.h"

#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_stoptheworld.h"

#if CAN_SANITIZE_LEAKS
namespace __lsan {

// This mutex is used to prevent races between DoLeakCheck and SuppressObject.
BlockingMutex global_mutex(LINKER_INITIALIZED);

Flags lsan_flags;

static void InitializeFlags() {
  Flags *f = flags();
  // Default values.
  f->report_blocks = false;
  f->resolution = 0;
  f->max_leaks = 0;
  f->exitcode = 23;
  f->use_registers = true;
  f->use_globals = true;
  f->use_stacks = true;
  f->use_tls = true;
  f->use_unaligned = false;
  f->verbosity = 0;
  f->log_pointers = false;
  f->log_threads = false;

  const char *options = GetEnv("LSAN_OPTIONS");
  if (options) {
    ParseFlag(options, &f->use_registers, "use_registers");
    ParseFlag(options, &f->use_globals, "use_globals");
    ParseFlag(options, &f->use_stacks, "use_stacks");
    ParseFlag(options, &f->use_tls, "use_tls");
    ParseFlag(options, &f->use_unaligned, "use_unaligned");
    ParseFlag(options, &f->report_blocks, "report_blocks");
    ParseFlag(options, &f->resolution, "resolution");
    CHECK_GE(&f->resolution, 0);
    ParseFlag(options, &f->max_leaks, "max_leaks");
    CHECK_GE(&f->max_leaks, 0);
    ParseFlag(options, &f->verbosity, "verbosity");
    ParseFlag(options, &f->log_pointers, "log_pointers");
    ParseFlag(options, &f->log_threads, "log_threads");
    ParseFlag(options, &f->exitcode, "exitcode");
  }
}

void InitCommonLsan() {
  InitializeFlags();
  InitializePlatformSpecificModules();
}

static inline bool CanBeAHeapPointer(uptr p) {
  // Since our heap is located in mmap-ed memory, we can assume a sensible lower
  // boundary on heap addresses.
  const uptr kMinAddress = 4 * 4096;
  if (p < kMinAddress) return false;
#ifdef __x86_64__
  // Accept only canonical form user-space addresses.
  return ((p >> 47) == 0);
#else
  return true;
#endif
}

// Scan the memory range, looking for byte patterns that point into allocator
// chunks. Mark those chunks with tag and add them to the frontier.
// There are two usage modes for this function: finding reachable or suppressed
// chunks (tag = kReachable or kSuppressed) and finding indirectly leaked chunks
// (tag = kIndirectlyLeaked). In the second case, there's no flood fill,
// so frontier = 0.
void ScanRangeForPointers(uptr begin, uptr end, InternalVector<uptr> *frontier,
                          const char *region_type, ChunkTag tag) {
  const uptr alignment = flags()->pointer_alignment();
  if (flags()->log_pointers)
    Report("Scanning %s range %p-%p.\n", region_type, begin, end);
  uptr pp = begin;
  if (pp % alignment)
    pp = pp + alignment - pp % alignment;
  for (; pp + sizeof(uptr) <= end; pp += alignment) {
    void *p = *reinterpret_cast<void**>(pp);
    if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
    void *chunk = PointsIntoChunk(p);
    if (!chunk) continue;
    LsanMetadata m(chunk);
    // Reachable beats suppressed beats leaked.
    if (m.tag() == kReachable) continue;
    if (m.tag() == kSuppressed && tag != kReachable) continue;
    m.set_tag(tag);
    if (flags()->log_pointers)
      Report("%p: found %p pointing into chunk %p-%p of size %llu.\n", pp, p,
             chunk, reinterpret_cast<uptr>(chunk) + m.requested_size(),
             m.requested_size());
    if (frontier)
      frontier->push_back(reinterpret_cast<uptr>(chunk));
  }
}

// Scan thread data (stacks and TLS) for heap pointers.
static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
                           InternalVector<uptr> *frontier) {
  InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
  uptr registers_begin = reinterpret_cast<uptr>(registers.data());
  uptr registers_end = registers_begin + registers.size();
  for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
    uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
    if (flags()->log_threads) Report("Processing thread %d.\n", os_id);
    uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
    bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
                                              &tls_begin, &tls_end,
                                              &cache_begin, &cache_end);
    if (!thread_found) {
      // If a thread can't be found in the thread registry, it's probably in the
      // process of destruction. Log this event and move on.
      if (flags()->log_threads)
        Report("Thread %d not found in registry.\n", os_id);
      continue;
    }
    uptr sp;
    bool have_registers =
        (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
    if (!have_registers) {
      Report("Unable to get registers from thread %d.\n");
      // If unable to get SP, consider the entire stack to be reachable.
      sp = stack_begin;
    }

    if (flags()->use_registers && have_registers)
      ScanRangeForPointers(registers_begin, registers_end, frontier,
                           "REGISTERS", kReachable);

    if (flags()->use_stacks) {
      if (flags()->log_threads)
        Report("Stack at %p-%p, SP = %p.\n", stack_begin, stack_end, sp);
      if (sp < stack_begin || sp >= stack_end) {
        // SP is outside the recorded stack range (e.g. the thread is running a
        // signal handler on alternate stack). Again, consider the entire stack
        // range to be reachable.
        if (flags()->log_threads)
          Report("WARNING: stack_pointer not in stack_range.\n");
      } else {
        // Shrink the stack range to ignore out-of-scope values.
        stack_begin = sp;
      }
      ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
                           kReachable);
    }

    if (flags()->use_tls) {
      if (flags()->log_threads) Report("TLS at %p-%p.\n", tls_begin, tls_end);
      if (cache_begin == cache_end) {
        ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
      } else {
        // Because LSan should not be loaded with dlopen(), we can assume
        // that allocator cache will be part of static TLS image.
        CHECK_LE(tls_begin, cache_begin);
        CHECK_GE(tls_end, cache_end);
        if (tls_begin < cache_begin)
          ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
                               kReachable);
        if (tls_end > cache_end)
          ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
      }
    }
  }
}

static void FloodFillTag(InternalVector<uptr> *frontier, ChunkTag tag) {
  while (frontier->size()) {
    uptr next_chunk = frontier->back();
    frontier->pop_back();
    LsanMetadata m(reinterpret_cast<void *>(next_chunk));
    ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
                         "HEAP", tag);
  }
}

// Mark leaked chunks which are reachable from other leaked chunks.
void MarkIndirectlyLeakedCb::operator()(void *p) const {
  p = GetUserBegin(p);
  LsanMetadata m(p);
  if (m.allocated() && m.tag() != kReachable) {
    ScanRangeForPointers(reinterpret_cast<uptr>(p),
                         reinterpret_cast<uptr>(p) + m.requested_size(),
                         /* frontier */ 0, "HEAP", kIndirectlyLeaked);
  }
}

void CollectSuppressedCb::operator()(void *p) const {
  p = GetUserBegin(p);
  LsanMetadata m(p);
  if (m.allocated() && m.tag() == kSuppressed)
    frontier_->push_back(reinterpret_cast<uptr>(p));
}

// Set the appropriate tag on each chunk.
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
  // Holds the flood fill frontier.
  InternalVector<uptr> frontier(GetPageSizeCached());

  if (flags()->use_globals)
    ProcessGlobalRegions(&frontier);
  ProcessThreads(suspended_threads, &frontier);
  FloodFillTag(&frontier, kReachable);
  // The check here is relatively expensive, so we do this in a separate flood
  // fill. That way we can skip the check for chunks that are reachable
  // otherwise.
  ProcessPlatformSpecificAllocations(&frontier);
  FloodFillTag(&frontier, kReachable);

  if (flags()->log_pointers)
    Report("Scanning suppressed blocks.\n");
  CHECK_EQ(0, frontier.size());
  ForEachChunk(CollectSuppressedCb(&frontier));
  FloodFillTag(&frontier, kSuppressed);

  // Iterate over leaked chunks and mark those that are reachable from other
  // leaked chunks.
  if (flags()->log_pointers)
    Report("Scanning leaked blocks.\n");
  ForEachChunk(MarkIndirectlyLeakedCb());
}

static void PrintStackTraceById(u32 stack_trace_id) {
  CHECK(stack_trace_id);
  uptr size = 0;
  const uptr *trace = StackDepotGet(stack_trace_id, &size);
  StackTrace::PrintStack(trace, size, common_flags()->symbolize,
                         common_flags()->strip_path_prefix, 0);
}

void CollectLeaksCb::operator()(void *p) const {
  p = GetUserBegin(p);
  LsanMetadata m(p);
  if (!m.allocated()) return;
  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
    uptr resolution = flags()->resolution;
    if (resolution > 0) {
      uptr size = 0;
      const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
      size = Min(size, resolution);
      leak_report_->Add(StackDepotPut(trace, size), m.requested_size(),
                        m.tag());
    } else {
      leak_report_->Add(m.stack_trace_id(), m.requested_size(), m.tag());
    }
  }
}

static void CollectLeaks(LeakReport *leak_report) {
  ForEachChunk(CollectLeaksCb(leak_report));
}

void PrintLeakedCb::operator()(void *p) const {
  p = GetUserBegin(p);
  LsanMetadata m(p);
  if (!m.allocated()) return;
  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
    Printf("%s leaked %llu byte block at %p\n",
           m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly",
           m.requested_size(), p);
  }
}

static void PrintLeaked() {
  Printf("Reporting individual blocks:\n");
  Printf("============================\n");
  ForEachChunk(PrintLeakedCb());
  Printf("\n");
}

enum LeakCheckResult {
  kFatalError,
  kLeaksFound,
  kNoLeaks
};

static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
                                void *arg) {
  LeakCheckResult *result = reinterpret_cast<LeakCheckResult *>(arg);
  CHECK_EQ(*result, kFatalError);
  ClassifyAllChunks(suspended_threads);
  LeakReport leak_report;
  CollectLeaks(&leak_report);
  if (leak_report.IsEmpty()) {
    *result = kNoLeaks;
    return;
  }
  Printf("\n");
  Printf("=================================================================\n");
  Report("ERROR: LeakSanitizer: detected memory leaks\n");
  leak_report.PrintLargest(flags()->max_leaks);
  if (flags()->report_blocks)
    PrintLeaked();
  leak_report.PrintSummary();
  Printf("\n");
  *result = kLeaksFound;
}

void DoLeakCheck() {
  BlockingMutexLock l(&global_mutex);
  static bool already_done;
  CHECK(!already_done);
  already_done = true;
  LeakCheckResult result = kFatalError;
  LockThreadRegistry();
  LockAllocator();
  StopTheWorld(DoLeakCheckCallback, &result);
  UnlockAllocator();
  UnlockThreadRegistry();
  if (result == kFatalError) {
    Report("LeakSanitizer has encountered a fatal error.\n");
    Die();
  } else if (result == kLeaksFound) {
    if (flags()->exitcode)
      internal__exit(flags()->exitcode);
  }
}

///// LeakReport implementation. /////

// A hard limit on the number of distinct leaks, to avoid quadratic complexity
// in LeakReport::Add(). We don't expect to ever see this many leaks in
// real-world applications.
// FIXME: Get rid of this limit by changing the implementation of LeakReport to
// use a hash table.
const uptr kMaxLeaksConsidered = 1000;

void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) {
  CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
  bool is_directly_leaked = (tag == kDirectlyLeaked);
  for (uptr i = 0; i < leaks_.size(); i++)
    if (leaks_[i].stack_trace_id == stack_trace_id &&
        leaks_[i].is_directly_leaked == is_directly_leaked) {
      leaks_[i].hit_count++;
      leaks_[i].total_size += leaked_size;
      return;
    }
  if (leaks_.size() == kMaxLeaksConsidered) return;
  Leak leak = { /* hit_count */ 1, leaked_size, stack_trace_id,
                is_directly_leaked };
  leaks_.push_back(leak);
}

static bool IsLarger(const Leak &leak1, const Leak &leak2) {
  return leak1.total_size > leak2.total_size;
}

void LeakReport::PrintLargest(uptr max_leaks) {
  CHECK(leaks_.size() <= kMaxLeaksConsidered);
  Printf("\n");
  if (leaks_.size() == kMaxLeaksConsidered)
    Printf("Too many leaks! Only the first %llu leaks encountered will be "
           "reported.\n",
           kMaxLeaksConsidered);
  if (max_leaks > 0 && max_leaks < leaks_.size())
    Printf("The %llu largest leak(s):\n", max_leaks);
  InternalSort(&leaks_, leaks_.size(), IsLarger);
  max_leaks = max_leaks > 0 ? Min(max_leaks, leaks_.size()) : leaks_.size();
  for (uptr i = 0; i < max_leaks; i++) {
    Printf("%s leak of %llu byte(s) in %llu object(s) allocated from:\n",
           leaks_[i].is_directly_leaked ? "Direct" : "Indirect",
           leaks_[i].total_size, leaks_[i].hit_count);
    PrintStackTraceById(leaks_[i].stack_trace_id);
    Printf("\n");
  }
  if (max_leaks < leaks_.size()) {
    uptr remaining = leaks_.size() - max_leaks;
    Printf("Omitting %llu more leak(s).\n", remaining);
  }
}

void LeakReport::PrintSummary() {
  CHECK(leaks_.size() <= kMaxLeaksConsidered);
  uptr bytes = 0, allocations = 0;
  for (uptr i = 0; i < leaks_.size(); i++) {
      bytes += leaks_[i].total_size;
      allocations += leaks_[i].hit_count;
  }
  Printf("SUMMARY: LeakSanitizer: %llu byte(s) leaked in %llu allocation(s).\n",
         bytes, allocations);
}

}  // namespace __lsan

using namespace __lsan;  // NOLINT

extern "C" {
void __lsan_ignore_object(const void *p) {
  // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
  // locked.
  BlockingMutexLock l(&global_mutex);
  IgnoreObjectResult res = IgnoreObjectLocked(p);
  if (res == kIgnoreObjectInvalid && flags()->verbosity >= 1)
    Report("__lsan_ignore_object(): no heap object found at %p", p);
  if (res == kIgnoreObjectAlreadyIgnored && flags()->verbosity >= 1)
    Report("__lsan_ignore_object(): "
           "heap object at %p is already being ignored\n", p);
  if (res == kIgnoreObjectSuccess && flags()->verbosity >= 2)
    Report("__lsan_ignore_object(): ignoring heap object at %p\n", p);
}
}  // extern "C"
#endif  // CAN_SANITIZE_LEAKS