#include "cpuid.h" #include "sanitizer_common/sanitizer_common.h" #include "xray_defs.h" #include "xray_interface_internal.h" #include #include #include #include #include #include #include #include namespace __xray { static std::pair retryingReadSome(int Fd, char *Begin, char *End) XRAY_NEVER_INSTRUMENT { auto BytesToRead = std::distance(Begin, End); ssize_t BytesRead; ssize_t TotalBytesRead = 0; while (BytesToRead && (BytesRead = read(Fd, Begin, BytesToRead))) { if (BytesRead == -1) { if (errno == EINTR) continue; Report("Read error; errno = %d\n", errno); return std::make_pair(TotalBytesRead, false); } TotalBytesRead += BytesRead; BytesToRead -= BytesRead; Begin += BytesRead; } return std::make_pair(TotalBytesRead, true); } static bool readValueFromFile(const char *Filename, long long *Value) XRAY_NEVER_INSTRUMENT { int Fd = open(Filename, O_RDONLY | O_CLOEXEC); if (Fd == -1) return false; static constexpr size_t BufSize = 256; char Line[BufSize] = {}; ssize_t BytesRead; bool Success; std::tie(BytesRead, Success) = retryingReadSome(Fd, Line, Line + BufSize); close(Fd); if (!Success) return false; char *End = nullptr; long long Tmp = internal_simple_strtoll(Line, &End, 10); bool Result = false; if (Line[0] != '\0' && (*End == '\n' || *End == '\0')) { *Value = Tmp; Result = true; } return Result; } uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT { long long TSCFrequency = -1; if (readValueFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &TSCFrequency)) { TSCFrequency *= 1000; } else if (readValueFromFile( "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", &TSCFrequency)) { TSCFrequency *= 1000; } else { Report("Unable to determine CPU frequency for TSC accounting.\n"); } return TSCFrequency == -1 ? 0 : static_cast(TSCFrequency); } static constexpr uint8_t CallOpCode = 0xe8; static constexpr uint16_t MovR10Seq = 0xba41; static constexpr uint16_t Jmp9Seq = 0x09eb; static constexpr uint16_t Jmp20Seq = 0x14eb; static constexpr uint16_t Jmp15Seq = 0x0feb; static constexpr uint8_t JmpOpCode = 0xe9; static constexpr uint8_t RetOpCode = 0xc3; static constexpr uint16_t NopwSeq = 0x9066; static constexpr int64_t MinOffset{std::numeric_limits::min()}; static constexpr int64_t MaxOffset{std::numeric_limits::max()}; bool patchFunctionEntry(const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled, void (*Trampoline)()) XRAY_NEVER_INSTRUMENT { // Here we do the dance of replacing the following sled: // // xray_sled_n: // jmp +9 // <9 byte nop> // // With the following: // // mov r10d, // call // // We need to do this in the following order: // // 1. Put the function id first, 2 bytes from the start of the sled (just // after the 2-byte jmp instruction). // 2. Put the call opcode 6 bytes from the start of the sled. // 3. Put the relative offset 7 bytes from the start of the sled. // 4. Do an atomic write over the jmp instruction for the "mov r10d" // opcode and first operand. // // Prerequisite is to compute the relative offset to the trampoline's address. int64_t TrampolineOffset = reinterpret_cast(Trampoline) - (static_cast(Sled.Address) + 11); if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) { Report("XRay Entry trampoline (%p) too far from sled (%p)\n", Trampoline, reinterpret_cast(Sled.Address)); return false; } if (Enable) { *reinterpret_cast(Sled.Address + 2) = FuncId; *reinterpret_cast(Sled.Address + 6) = CallOpCode; *reinterpret_cast(Sled.Address + 7) = TrampolineOffset; std::atomic_store_explicit( reinterpret_cast *>(Sled.Address), MovR10Seq, std::memory_order_release); } else { std::atomic_store_explicit( reinterpret_cast *>(Sled.Address), Jmp9Seq, std::memory_order_release); // FIXME: Write out the nops still? } return true; } bool patchFunctionExit(const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT { // Here we do the dance of replacing the following sled: // // xray_sled_n: // ret // <10 byte nop> // // With the following: // // mov r10d, // jmp // // 1. Put the function id first, 2 bytes from the start of the sled (just // after the 1-byte ret instruction). // 2. Put the jmp opcode 6 bytes from the start of the sled. // 3. Put the relative offset 7 bytes from the start of the sled. // 4. Do an atomic write over the jmp instruction for the "mov r10d" // opcode and first operand. // // Prerequisite is to compute the relative offset fo the // __xray_FunctionExit function's address. int64_t TrampolineOffset = reinterpret_cast(__xray_FunctionExit) - (static_cast(Sled.Address) + 11); if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) { Report("XRay Exit trampoline (%p) too far from sled (%p)\n", __xray_FunctionExit, reinterpret_cast(Sled.Address)); return false; } if (Enable) { *reinterpret_cast(Sled.Address + 2) = FuncId; *reinterpret_cast(Sled.Address + 6) = JmpOpCode; *reinterpret_cast(Sled.Address + 7) = TrampolineOffset; std::atomic_store_explicit( reinterpret_cast *>(Sled.Address), MovR10Seq, std::memory_order_release); } else { std::atomic_store_explicit( reinterpret_cast *>(Sled.Address), RetOpCode, std::memory_order_release); // FIXME: Write out the nops still? } return true; } bool patchFunctionTailExit(const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT { // Here we do the dance of replacing the tail call sled with a similar // sequence as the entry sled, but calls the tail exit sled instead. int64_t TrampolineOffset = reinterpret_cast(__xray_FunctionTailExit) - (static_cast(Sled.Address) + 11); if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) { Report("XRay Exit trampoline (%p) too far from sled (%p)\n", __xray_FunctionExit, reinterpret_cast(Sled.Address)); return false; } if (Enable) { *reinterpret_cast(Sled.Address + 2) = FuncId; *reinterpret_cast(Sled.Address + 6) = CallOpCode; *reinterpret_cast(Sled.Address + 7) = TrampolineOffset; std::atomic_store_explicit( reinterpret_cast *>(Sled.Address), MovR10Seq, std::memory_order_release); } else { std::atomic_store_explicit( reinterpret_cast *>(Sled.Address), Jmp9Seq, std::memory_order_release); // FIXME: Write out the nops still? } return true; } bool patchCustomEvent(const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT { // Here we do the dance of replacing the following sled: // // In Version 0: // // xray_sled_n: // jmp +20 // 2 bytes // ... // // With the following: // // nopw // 2 bytes* // ... // // // The "unpatch" should just turn the 'nopw' back to a 'jmp +20'. // // --- // // In Version 1: // // The jump offset is now 15 bytes (0x0f), so when restoring the nopw back // to a jmp, use 15 bytes instead. // if (Enable) { std::atomic_store_explicit( reinterpret_cast *>(Sled.Address), NopwSeq, std::memory_order_release); } else { switch (Sled.Version) { case 1: std::atomic_store_explicit( reinterpret_cast *>(Sled.Address), Jmp15Seq, std::memory_order_release); break; case 0: default: std::atomic_store_explicit( reinterpret_cast *>(Sled.Address), Jmp20Seq, std::memory_order_release); break; } } return false; } // We determine whether the CPU we're running on has the correct features we // need. In x86_64 this will be rdtscp support. bool probeRequiredCPUFeatures() XRAY_NEVER_INSTRUMENT { unsigned int EAX, EBX, ECX, EDX; // We check whether rdtscp support is enabled. According to the x86_64 manual, // level should be set at 0x80000001, and we should have a look at bit 27 in // EDX. That's 0x8000000 (or 1u << 27). __get_cpuid(0x80000001, &EAX, &EBX, &ECX, &EDX); if (!(EDX & (1u << 27))) { Report("Missing rdtscp support.\n"); return false; } // Also check whether we can determine the CPU frequency, since if we cannot, // we should use the emulated TSC instead. if (!getTSCFrequency()) { Report("Unable to determine CPU frequency.\n"); return false; } return true; } } // namespace __xray