//===-- xray_AArch64.cc -----------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of XRay, a dynamic runtime instrumentation system. // // Implementation of AArch64-specific routines (64-bit). // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_common.h" #include "xray_defs.h" #include "xray_emulate_tsc.h" #include "xray_interface_internal.h" #include #include namespace __xray { uint64_t cycleFrequency() XRAY_NEVER_INSTRUMENT { // There is no instruction like RDTSCP in user mode on ARM. ARM's CP15 does // not have a constant frequency like TSC on x86[_64]; it may go faster or // slower depending on CPU's turbo or power saving modes. Furthermore, to // read from CP15 on ARM a kernel modification or a driver is needed. // We can not require this from users of compiler-rt. // So on ARM we use clock_gettime(2) which gives the result in nanoseconds. // To get the measurements per second, we scale this by the number of // nanoseconds per second, pretending that the TSC frequency is 1GHz and // one TSC tick is 1 nanosecond. return NanosecondsPerSecond; } // The machine codes for some instructions used in runtime patching. enum class PatchOpcodes : uint32_t { PO_StpX0X30SP_m16e = 0xA9BF7BE0, // STP X0, X30, [SP, #-16]! PO_LdrW0_12 = 0x18000060, // LDR W0, #12 PO_LdrX16_12 = 0x58000070, // LDR X16, #12 PO_BlrX16 = 0xD63F0200, // BLR X16 PO_LdpX0X30SP_16 = 0xA8C17BE0, // LDP X0, X30, [SP], #16 PO_B32 = 0x14000008 // B #32 }; inline static bool patchSled(const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled, void (*TracingHook)()) XRAY_NEVER_INSTRUMENT { // When |Enable| == true, // We replace the following compile-time stub (sled): // // xray_sled_n: // B #32 // 7 NOPs (24 bytes) // // With the following runtime patch: // // xray_sled_n: // STP X0, X30, [SP, #-16]! ; PUSH {r0, lr} // LDR W0, #12 ; W0 := function ID // LDR X16,#12 ; X16 := address of the trampoline // BLR X16 // ;DATA: 32 bits of function ID // ;DATA: lower 32 bits of the address of the trampoline // ;DATA: higher 32 bits of the address of the trampoline // LDP X0, X30, [SP], #16 ; POP {r0, lr} // // Replacement of the first 4-byte instruction should be the last and atomic // operation, so that the user code which reaches the sled concurrently // either jumps over the whole sled, or executes the whole sled when the // latter is ready. // // When |Enable|==false, we set back the first instruction in the sled to be // B #32 uint32_t *FirstAddress = reinterpret_cast(Sled.Address); if (Enable) { uint32_t *CurAddress = FirstAddress + 1; *CurAddress = uint32_t(PatchOpcodes::PO_LdrW0_12); CurAddress++; *CurAddress = uint32_t(PatchOpcodes::PO_LdrX16_12); CurAddress++; *CurAddress = uint32_t(PatchOpcodes::PO_BlrX16); CurAddress++; *CurAddress = FuncId; CurAddress++; *reinterpret_cast(CurAddress) = TracingHook; CurAddress += 2; *CurAddress = uint32_t(PatchOpcodes::PO_LdpX0X30SP_16); std::atomic_store_explicit( reinterpret_cast *>(FirstAddress), uint32_t(PatchOpcodes::PO_StpX0X30SP_m16e), std::memory_order_release); } else { std::atomic_store_explicit( reinterpret_cast *>(FirstAddress), uint32_t(PatchOpcodes::PO_B32), std::memory_order_release); } return true; } bool patchFunctionEntry(const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT { return patchSled(Enable, FuncId, Sled, __xray_FunctionEntry); } bool patchFunctionExit(const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT { return patchSled(Enable, FuncId, Sled, __xray_FunctionExit); } bool patchFunctionTailExit(const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT { // FIXME: In the future we'd need to distinguish between non-tail exits and // tail exits for better information preservation. return patchSled(Enable, FuncId, Sled, __xray_FunctionExit); } } // namespace __xray