//===-- ubsan_diag.cc -----------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Diagnostic reporting for the UBSan runtime. // //===----------------------------------------------------------------------===// #include "ubsan_platform.h" #if CAN_SANITIZE_UB #include "ubsan_diag.h" #include "ubsan_init.h" #include "ubsan_flags.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_report_decorator.h" #include "sanitizer_common/sanitizer_stacktrace.h" #include "sanitizer_common/sanitizer_stacktrace_printer.h" #include "sanitizer_common/sanitizer_suppressions.h" #include "sanitizer_common/sanitizer_symbolizer.h" #include using namespace __ubsan; void __ubsan::GetStackTrace(BufferedStackTrace *stack, uptr max_depth, uptr pc, uptr bp, void *context, bool fast) { uptr top = 0; uptr bottom = 0; if (fast) GetThreadStackTopAndBottom(false, &top, &bottom); stack->Unwind(max_depth, pc, bp, context, top, bottom, fast); } static void MaybePrintStackTrace(uptr pc, uptr bp) { // We assume that flags are already parsed, as UBSan runtime // will definitely be called when we print the first diagnostics message. if (!flags()->print_stacktrace) return; BufferedStackTrace stack; GetStackTrace(&stack, kStackTraceMax, pc, bp, nullptr, common_flags()->fast_unwind_on_fatal); stack.Print(); } static const char *ConvertTypeToString(ErrorType Type) { switch (Type) { #define UBSAN_CHECK(Name, SummaryKind, FSanitizeFlagName) \ case ErrorType::Name: \ return SummaryKind; #include "ubsan_checks.inc" #undef UBSAN_CHECK } UNREACHABLE("unknown ErrorType!"); } static const char *ConvertTypeToFlagName(ErrorType Type) { switch (Type) { #define UBSAN_CHECK(Name, SummaryKind, FSanitizeFlagName) \ case ErrorType::Name: \ return FSanitizeFlagName; #include "ubsan_checks.inc" #undef UBSAN_CHECK } UNREACHABLE("unknown ErrorType!"); } static void MaybeReportErrorSummary(Location Loc, ErrorType Type) { if (!common_flags()->print_summary) return; if (!flags()->report_error_type) Type = ErrorType::GenericUB; const char *ErrorKind = ConvertTypeToString(Type); if (Loc.isSourceLocation()) { SourceLocation SLoc = Loc.getSourceLocation(); if (!SLoc.isInvalid()) { AddressInfo AI; AI.file = internal_strdup(SLoc.getFilename()); AI.line = SLoc.getLine(); AI.column = SLoc.getColumn(); AI.function = internal_strdup(""); // Avoid printing ?? as function name. ReportErrorSummary(ErrorKind, AI, GetSanititizerToolName()); AI.Clear(); return; } } else if (Loc.isSymbolizedStack()) { const AddressInfo &AI = Loc.getSymbolizedStack()->info; ReportErrorSummary(ErrorKind, AI, GetSanititizerToolName()); return; } ReportErrorSummary(ErrorKind, GetSanititizerToolName()); } namespace { class Decorator : public SanitizerCommonDecorator { public: Decorator() : SanitizerCommonDecorator() {} const char *Highlight() const { return Green(); } const char *Note() const { return Black(); } }; } SymbolizedStack *__ubsan::getSymbolizedLocation(uptr PC) { InitAsStandaloneIfNecessary(); return Symbolizer::GetOrInit()->SymbolizePC(PC); } Diag &Diag::operator<<(const TypeDescriptor &V) { return AddArg(V.getTypeName()); } Diag &Diag::operator<<(const Value &V) { if (V.getType().isSignedIntegerTy()) AddArg(V.getSIntValue()); else if (V.getType().isUnsignedIntegerTy()) AddArg(V.getUIntValue()); else if (V.getType().isFloatTy()) AddArg(V.getFloatValue()); else AddArg(""); return *this; } /// Hexadecimal printing for numbers too large for Printf to handle directly. static void RenderHex(InternalScopedString *Buffer, UIntMax Val) { #if HAVE_INT128_T Buffer->append("0x%08x%08x%08x%08x", (unsigned int)(Val >> 96), (unsigned int)(Val >> 64), (unsigned int)(Val >> 32), (unsigned int)(Val)); #else UNREACHABLE("long long smaller than 64 bits?"); #endif } static void RenderLocation(InternalScopedString *Buffer, Location Loc) { switch (Loc.getKind()) { case Location::LK_Source: { SourceLocation SLoc = Loc.getSourceLocation(); if (SLoc.isInvalid()) Buffer->append(""); else RenderSourceLocation(Buffer, SLoc.getFilename(), SLoc.getLine(), SLoc.getColumn(), common_flags()->symbolize_vs_style, common_flags()->strip_path_prefix); return; } case Location::LK_Memory: Buffer->append("%p", Loc.getMemoryLocation()); return; case Location::LK_Symbolized: { const AddressInfo &Info = Loc.getSymbolizedStack()->info; if (Info.file) RenderSourceLocation(Buffer, Info.file, Info.line, Info.column, common_flags()->symbolize_vs_style, common_flags()->strip_path_prefix); else if (Info.module) RenderModuleLocation(Buffer, Info.module, Info.module_offset, Info.module_arch, common_flags()->strip_path_prefix); else Buffer->append("%p", Info.address); return; } case Location::LK_Null: Buffer->append(""); return; } } static void RenderText(InternalScopedString *Buffer, const char *Message, const Diag::Arg *Args) { for (const char *Msg = Message; *Msg; ++Msg) { if (*Msg != '%') { Buffer->append("%c", *Msg); continue; } const Diag::Arg &A = Args[*++Msg - '0']; switch (A.Kind) { case Diag::AK_String: Buffer->append("%s", A.String); break; case Diag::AK_TypeName: { if (SANITIZER_WINDOWS) // The Windows implementation demangles names early. Buffer->append("'%s'", A.String); else Buffer->append("'%s'", Symbolizer::GetOrInit()->Demangle(A.String)); break; } case Diag::AK_SInt: // 'long long' is guaranteed to be at least 64 bits wide. if (A.SInt >= INT64_MIN && A.SInt <= INT64_MAX) Buffer->append("%lld", (long long)A.SInt); else RenderHex(Buffer, A.SInt); break; case Diag::AK_UInt: if (A.UInt <= UINT64_MAX) Buffer->append("%llu", (unsigned long long)A.UInt); else RenderHex(Buffer, A.UInt); break; case Diag::AK_Float: { // FIXME: Support floating-point formatting in sanitizer_common's // printf, and stop using snprintf here. char FloatBuffer[32]; #if SANITIZER_WINDOWS sprintf_s(FloatBuffer, sizeof(FloatBuffer), "%Lg", (long double)A.Float); #else snprintf(FloatBuffer, sizeof(FloatBuffer), "%Lg", (long double)A.Float); #endif Buffer->append("%s", FloatBuffer); break; } case Diag::AK_Pointer: Buffer->append("%p", A.Pointer); break; } } } /// Find the earliest-starting range in Ranges which ends after Loc. static Range *upperBound(MemoryLocation Loc, Range *Ranges, unsigned NumRanges) { Range *Best = 0; for (unsigned I = 0; I != NumRanges; ++I) if (Ranges[I].getEnd().getMemoryLocation() > Loc && (!Best || Best->getStart().getMemoryLocation() > Ranges[I].getStart().getMemoryLocation())) Best = &Ranges[I]; return Best; } static inline uptr subtractNoOverflow(uptr LHS, uptr RHS) { return (LHS < RHS) ? 0 : LHS - RHS; } static inline uptr addNoOverflow(uptr LHS, uptr RHS) { const uptr Limit = (uptr)-1; return (LHS > Limit - RHS) ? Limit : LHS + RHS; } /// Render a snippet of the address space near a location. static void PrintMemorySnippet(const Decorator &Decor, MemoryLocation Loc, Range *Ranges, unsigned NumRanges, const Diag::Arg *Args) { // Show at least the 8 bytes surrounding Loc. const unsigned MinBytesNearLoc = 4; MemoryLocation Min = subtractNoOverflow(Loc, MinBytesNearLoc); MemoryLocation Max = addNoOverflow(Loc, MinBytesNearLoc); MemoryLocation OrigMin = Min; for (unsigned I = 0; I < NumRanges; ++I) { Min = __sanitizer::Min(Ranges[I].getStart().getMemoryLocation(), Min); Max = __sanitizer::Max(Ranges[I].getEnd().getMemoryLocation(), Max); } // If we have too many interesting bytes, prefer to show bytes after Loc. const unsigned BytesToShow = 32; if (Max - Min > BytesToShow) Min = __sanitizer::Min(Max - BytesToShow, OrigMin); Max = addNoOverflow(Min, BytesToShow); if (!IsAccessibleMemoryRange(Min, Max - Min)) { Printf("\n"); return; } // Emit data. InternalScopedString Buffer(1024); for (uptr P = Min; P != Max; ++P) { unsigned char C = *reinterpret_cast(P); Buffer.append("%s%02x", (P % 8 == 0) ? " " : " ", C); } Buffer.append("\n"); // Emit highlights. Buffer.append(Decor.Highlight()); Range *InRange = upperBound(Min, Ranges, NumRanges); for (uptr P = Min; P != Max; ++P) { char Pad = ' ', Byte = ' '; if (InRange && InRange->getEnd().getMemoryLocation() == P) InRange = upperBound(P, Ranges, NumRanges); if (!InRange && P > Loc) break; if (InRange && InRange->getStart().getMemoryLocation() < P) Pad = '~'; if (InRange && InRange->getStart().getMemoryLocation() <= P) Byte = '~'; if (P % 8 == 0) Buffer.append("%c", Pad); Buffer.append("%c", Pad); Buffer.append("%c", P == Loc ? '^' : Byte); Buffer.append("%c", Byte); } Buffer.append("%s\n", Decor.Default()); // Go over the line again, and print names for the ranges. InRange = 0; unsigned Spaces = 0; for (uptr P = Min; P != Max; ++P) { if (!InRange || InRange->getEnd().getMemoryLocation() == P) InRange = upperBound(P, Ranges, NumRanges); if (!InRange) break; Spaces += (P % 8) == 0 ? 2 : 1; if (InRange && InRange->getStart().getMemoryLocation() == P) { while (Spaces--) Buffer.append(" "); RenderText(&Buffer, InRange->getText(), Args); Buffer.append("\n"); // FIXME: We only support naming one range for now! break; } Spaces += 2; } Printf("%s", Buffer.data()); // FIXME: Print names for anything we can identify within the line: // // * If we can identify the memory itself as belonging to a particular // global, stack variable, or dynamic allocation, then do so. // // * If we have a pointer-size, pointer-aligned range highlighted, // determine whether the value of that range is a pointer to an // entity which we can name, and if so, print that name. // // This needs an external symbolizer, or (preferably) ASan instrumentation. } Diag::~Diag() { // All diagnostics should be printed under report mutex. ScopedReport::CheckLocked(); Decorator Decor; InternalScopedString Buffer(1024); Buffer.append(Decor.Bold()); RenderLocation(&Buffer, Loc); Buffer.append(":"); switch (Level) { case DL_Error: Buffer.append("%s runtime error: %s%s", Decor.Warning(), Decor.Default(), Decor.Bold()); break; case DL_Note: Buffer.append("%s note: %s", Decor.Note(), Decor.Default()); break; } RenderText(&Buffer, Message, Args); Buffer.append("%s\n", Decor.Default()); Printf("%s", Buffer.data()); if (Loc.isMemoryLocation()) PrintMemorySnippet(Decor, Loc.getMemoryLocation(), Ranges, NumRanges, Args); } ScopedReport::Initializer::Initializer() { InitAsStandaloneIfNecessary(); } ScopedReport::ScopedReport(ReportOptions Opts, Location SummaryLoc, ErrorType Type) : Opts(Opts), SummaryLoc(SummaryLoc), Type(Type) {} ScopedReport::~ScopedReport() { MaybePrintStackTrace(Opts.pc, Opts.bp); MaybeReportErrorSummary(SummaryLoc, Type); if (flags()->halt_on_error) Die(); } ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)]; static SuppressionContext *suppression_ctx = nullptr; static const char kVptrCheck[] = "vptr_check"; static const char *kSuppressionTypes[] = { #define UBSAN_CHECK(Name, SummaryKind, FSanitizeFlagName) FSanitizeFlagName, #include "ubsan_checks.inc" #undef UBSAN_CHECK kVptrCheck, }; void __ubsan::InitializeSuppressions() { CHECK_EQ(nullptr, suppression_ctx); suppression_ctx = new (suppression_placeholder) // NOLINT SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes)); suppression_ctx->ParseFromFile(flags()->suppressions); } bool __ubsan::IsVptrCheckSuppressed(const char *TypeName) { InitAsStandaloneIfNecessary(); CHECK(suppression_ctx); Suppression *s; return suppression_ctx->Match(TypeName, kVptrCheck, &s); } bool __ubsan::IsPCSuppressed(ErrorType ET, uptr PC, const char *Filename) { InitAsStandaloneIfNecessary(); CHECK(suppression_ctx); const char *SuppType = ConvertTypeToFlagName(ET); // Fast path: don't symbolize PC if there is no suppressions for given UB // type. if (!suppression_ctx->HasSuppressionType(SuppType)) return false; Suppression *s = nullptr; // Suppress by file name known to runtime. if (Filename != nullptr && suppression_ctx->Match(Filename, SuppType, &s)) return true; // Suppress by module name. if (const char *Module = Symbolizer::GetOrInit()->GetModuleNameForPc(PC)) { if (suppression_ctx->Match(Module, SuppType, &s)) return true; } // Suppress by function or source file name from debug info. SymbolizedStackHolder Stack(Symbolizer::GetOrInit()->SymbolizePC(PC)); const AddressInfo &AI = Stack.get()->info; return suppression_ctx->Match(AI.function, SuppType, &s) || suppression_ctx->Match(AI.file, SuppType, &s); } #endif // CAN_SANITIZE_UB