//===-- tsan_platform_linux.cc --------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Linux- and FreeBSD-specific code. //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_platform.h" #if SANITIZER_LINUX || SANITIZER_FREEBSD #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_procmaps.h" #include "sanitizer_common/sanitizer_stoptheworld.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "tsan_platform.h" #include "tsan_rtl.h" #include "tsan_flags.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if SANITIZER_LINUX #define __need_res_state #include #endif #ifdef sa_handler # undef sa_handler #endif #ifdef sa_sigaction # undef sa_sigaction #endif #if SANITIZER_FREEBSD extern "C" void *__libc_stack_end; void *__libc_stack_end = 0; #endif namespace __tsan { static uptr g_data_start; static uptr g_data_end; const uptr kPageSize = 4096; enum { MemTotal = 0, MemShadow = 1, MemMeta = 2, MemFile = 3, MemMmap = 4, MemTrace = 5, MemHeap = 6, MemOther = 7, MemCount = 8, }; void FillProfileCallback(uptr p, uptr rss, bool file, uptr *mem, uptr stats_size) { mem[MemTotal] += rss; if (p >= kShadowBeg && p < kShadowEnd) mem[MemShadow] += rss; else if (p >= kMetaShadowBeg && p < kMetaShadowEnd) mem[MemMeta] += rss; #ifndef SANITIZER_GO else if (p >= kHeapMemBeg && p < kHeapMemEnd) mem[MemHeap] += rss; else if (p >= kLoAppMemBeg && p < kLoAppMemEnd) mem[file ? MemFile : MemMmap] += rss; else if (p >= kHiAppMemBeg && p < kHiAppMemEnd) mem[file ? MemFile : MemMmap] += rss; #else else if (p >= kAppMemBeg && p < kAppMemEnd) mem[file ? MemFile : MemMmap] += rss; #endif else if (p >= kTraceMemBeg && p < kTraceMemEnd) mem[MemTrace] += rss; else mem[MemOther] += rss; } void WriteMemoryProfile(char *buf, uptr buf_size, uptr nthread, uptr nlive) { uptr mem[MemCount] = {}; __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7); StackDepotStats *stacks = StackDepotGetStats(); internal_snprintf(buf, buf_size, "RSS %zd MB: shadow:%zd meta:%zd file:%zd mmap:%zd" " trace:%zd heap:%zd other:%zd stacks=%zd[%zd] nthr=%zd/%zd\n", mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20, mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemTrace] >> 20, mem[MemHeap] >> 20, mem[MemOther] >> 20, stacks->allocated >> 20, stacks->n_uniq_ids, nlive, nthread); } #if SANITIZER_LINUX void FlushShadowMemoryCallback( const SuspendedThreadsList &suspended_threads_list, void *argument) { FlushUnneededShadowMemory(kShadowBeg, kShadowEnd - kShadowBeg); } #endif void FlushShadowMemory() { #if SANITIZER_LINUX StopTheWorld(FlushShadowMemoryCallback, 0); #endif } #ifndef SANITIZER_GO static void ProtectRange(uptr beg, uptr end) { CHECK_LE(beg, end); if (beg == end) return; if (beg != (uptr)Mprotect(beg, end - beg)) { Printf("FATAL: ThreadSanitizer can not protect [%zx,%zx]\n", beg, end); Printf("FATAL: Make sure you are not using unlimited stack\n"); Die(); } } // Mark shadow for .rodata sections with the special kShadowRodata marker. // Accesses to .rodata can't race, so this saves time, memory and trace space. static void MapRodata() { // First create temp file. const char *tmpdir = GetEnv("TMPDIR"); if (tmpdir == 0) tmpdir = GetEnv("TEST_TMPDIR"); #ifdef P_tmpdir if (tmpdir == 0) tmpdir = P_tmpdir; #endif if (tmpdir == 0) return; char name[256]; internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d", tmpdir, (int)internal_getpid()); uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600); if (internal_iserror(openrv)) return; internal_unlink(name); // Unlink it now, so that we can reuse the buffer. fd_t fd = openrv; // Fill the file with kShadowRodata. const uptr kMarkerSize = 512 * 1024 / sizeof(u64); InternalScopedBuffer marker(kMarkerSize); // volatile to prevent insertion of memset for (volatile u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++) *p = kShadowRodata; internal_write(fd, marker.data(), marker.size()); // Map the file into memory. uptr page = internal_mmap(0, kPageSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, fd, 0); if (internal_iserror(page)) { internal_close(fd); return; } // Map the file into shadow of .rodata sections. MemoryMappingLayout proc_maps(/*cache_enabled*/true); uptr start, end, offset, prot; // Reusing the buffer 'name'. while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), &prot)) { if (name[0] != 0 && name[0] != '[' && (prot & MemoryMappingLayout::kProtectionRead) && (prot & MemoryMappingLayout::kProtectionExecute) && !(prot & MemoryMappingLayout::kProtectionWrite) && IsAppMem(start)) { // Assume it's .rodata char *shadow_start = (char*)MemToShadow(start); char *shadow_end = (char*)MemToShadow(end); for (char *p = shadow_start; p < shadow_end; p += marker.size()) { internal_mmap(p, Min(marker.size(), shadow_end - p), PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0); } } } internal_close(fd); } void InitializeShadowMemory() { // Map memory shadow. uptr shadow = (uptr)MmapFixedNoReserve(kShadowBeg, kShadowEnd - kShadowBeg); if (shadow != kShadowBeg) { Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n"); Printf("FATAL: Make sure to compile with -fPIE and " "to link with -pie (%p, %p).\n", shadow, kShadowBeg); Die(); } // This memory range is used for thread stacks and large user mmaps. // Frequently a thread uses only a small part of stack and similarly // a program uses a small part of large mmap. On some programs // we see 20% memory usage reduction without huge pages for this range. #ifdef MADV_NOHUGEPAGE madvise((void*)MemToShadow(0x7f0000000000ULL), 0x10000000000ULL * kShadowMultiplier, MADV_NOHUGEPAGE); #endif DPrintf("memory shadow: %zx-%zx (%zuGB)\n", kShadowBeg, kShadowEnd, (kShadowEnd - kShadowBeg) >> 30); // Map meta shadow. uptr meta_size = kMetaShadowEnd - kMetaShadowBeg; uptr meta = (uptr)MmapFixedNoReserve(kMetaShadowBeg, meta_size); if (meta != kMetaShadowBeg) { Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n"); Printf("FATAL: Make sure to compile with -fPIE and " "to link with -pie (%p, %p).\n", meta, kMetaShadowBeg); Die(); } DPrintf("meta shadow: %zx-%zx (%zuGB)\n", meta, meta + meta_size, meta_size >> 30); MapRodata(); } static void InitDataSeg() { MemoryMappingLayout proc_maps(true); uptr start, end, offset; char name[128]; #if SANITIZER_FREEBSD // On FreeBSD BSS is usually the last block allocated within the // low range and heap is the last block allocated within the range // 0x800000000-0x8ffffffff. while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), /*protection*/ 0)) { DPrintf("%p-%p %p %s\n", start, end, offset, name); if ((start & 0xffff00000000ULL) == 0 && (end & 0xffff00000000ULL) == 0 && name[0] == '\0') { g_data_start = start; g_data_end = end; } } #else bool prev_is_data = false; while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), /*protection*/ 0)) { DPrintf("%p-%p %p %s\n", start, end, offset, name); bool is_data = offset != 0 && name[0] != 0; // BSS may get merged with [heap] in /proc/self/maps. This is not very // reliable. bool is_bss = offset == 0 && (name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data; if (g_data_start == 0 && is_data) g_data_start = start; if (is_bss) g_data_end = end; prev_is_data = is_data; } #endif DPrintf("guessed data_start=%p data_end=%p\n", g_data_start, g_data_end); CHECK_LT(g_data_start, g_data_end); CHECK_GE((uptr)&g_data_start, g_data_start); CHECK_LT((uptr)&g_data_start, g_data_end); } static void CheckAndProtect() { // Ensure that the binary is indeed compiled with -pie. MemoryMappingLayout proc_maps(true); uptr p, end; while (proc_maps.Next(&p, &end, 0, 0, 0, 0)) { if (IsAppMem(p)) continue; if (p >= kHeapMemEnd && p < kHeapMemEnd + PrimaryAllocator::AdditionalSize()) continue; if (p >= 0xf000000000000000ull) // vdso break; Printf("FATAL: ThreadSanitizer: unexpected memory mapping %p-%p\n", p, end); Die(); } ProtectRange(kLoAppMemEnd, kShadowBeg); ProtectRange(kShadowEnd, kMetaShadowBeg); ProtectRange(kMetaShadowEnd, kTraceMemBeg); // Memory for traces is mapped lazily in MapThreadTrace. // Protect the whole range for now, so that user does not map something here. ProtectRange(kTraceMemBeg, kTraceMemEnd); ProtectRange(kTraceMemEnd, kHeapMemBeg); ProtectRange(kHeapMemEnd + PrimaryAllocator::AdditionalSize(), kHiAppMemBeg); } #endif // #ifndef SANITIZER_GO void InitializePlatform() { DisableCoreDumperIfNecessary(); // Go maps shadow memory lazily and works fine with limited address space. // Unlimited stack is not a problem as well, because the executable // is not compiled with -pie. if (kCppMode) { bool reexec = false; // TSan doesn't play well with unlimited stack size (as stack // overlaps with shadow memory). If we detect unlimited stack size, // we re-exec the program with limited stack size as a best effort. if (StackSizeIsUnlimited()) { const uptr kMaxStackSize = 32 * 1024 * 1024; VReport(1, "Program is run with unlimited stack size, which wouldn't " "work with ThreadSanitizer.\n" "Re-execing with stack size limited to %zd bytes.\n", kMaxStackSize); SetStackSizeLimitInBytes(kMaxStackSize); reexec = true; } if (!AddressSpaceIsUnlimited()) { Report("WARNING: Program is run with limited virtual address space," " which wouldn't work with ThreadSanitizer.\n"); Report("Re-execing with unlimited virtual address space.\n"); SetAddressSpaceUnlimited(); reexec = true; } if (reexec) ReExec(); } #ifndef SANITIZER_GO CheckAndProtect(); InitTlsSize(); InitDataSeg(); #endif } bool IsGlobalVar(uptr addr) { return g_data_start && addr >= g_data_start && addr < g_data_end; } #ifndef SANITIZER_GO // Extract file descriptors passed to glibc internal __res_iclose function. // This is required to properly "close" the fds, because we do not see internal // closes within glibc. The code is a pure hack. int ExtractResolvFDs(void *state, int *fds, int nfd) { #if SANITIZER_LINUX int cnt = 0; __res_state *statp = (__res_state*)state; for (int i = 0; i < MAXNS && cnt < nfd; i++) { if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1) fds[cnt++] = statp->_u._ext.nssocks[i]; } return cnt; #else return 0; #endif } // Extract file descriptors passed via UNIX domain sockets. // This is requried to properly handle "open" of these fds. // see 'man recvmsg' and 'man 3 cmsg'. int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) { int res = 0; msghdr *msg = (msghdr*)msgp; struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg); for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) continue; int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]); for (int i = 0; i < n; i++) { fds[res++] = ((int*)CMSG_DATA(cmsg))[i]; if (res == nfd) return res; } } return res; } int call_pthread_cancel_with_cleanup(int(*fn)(void *c, void *m, void *abstime), void *c, void *m, void *abstime, void(*cleanup)(void *arg), void *arg) { // pthread_cleanup_push/pop are hardcore macros mess. // We can't intercept nor call them w/o including pthread.h. int res; pthread_cleanup_push(cleanup, arg); res = fn(c, m, abstime); pthread_cleanup_pop(0); return res; } #endif } // namespace __tsan #endif // SANITIZER_LINUX || SANITIZER_FREEBSD