//===-- tsan_platform_linux.cc --------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Linux- and FreeBSD-specific code. //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_platform.h" #if SANITIZER_LINUX || SANITIZER_FREEBSD #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_linux.h" #include "sanitizer_common/sanitizer_platform_limits_posix.h" #include "sanitizer_common/sanitizer_posix.h" #include "sanitizer_common/sanitizer_procmaps.h" #include "sanitizer_common/sanitizer_stoptheworld.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "tsan_platform.h" #include "tsan_rtl.h" #include "tsan_flags.h" #include #include #include #include #include #include #include #include #if SANITIZER_LINUX #include #endif #include #include #include #include #include #include #include #include #include #include #if SANITIZER_LINUX #define __need_res_state #include #endif #ifdef sa_handler # undef sa_handler #endif #ifdef sa_sigaction # undef sa_sigaction #endif #if SANITIZER_FREEBSD extern "C" void *__libc_stack_end; void *__libc_stack_end = 0; #endif namespace __tsan { static uptr g_data_start; static uptr g_data_end; #ifdef TSAN_RUNTIME_VMA // Runtime detected VMA size. uptr vmaSize; #endif enum { MemTotal = 0, MemShadow = 1, MemMeta = 2, MemFile = 3, MemMmap = 4, MemTrace = 5, MemHeap = 6, MemOther = 7, MemCount = 8, }; void FillProfileCallback(uptr p, uptr rss, bool file, uptr *mem, uptr stats_size) { mem[MemTotal] += rss; if (p >= ShadowBeg() && p < ShadowEnd()) mem[MemShadow] += rss; else if (p >= MetaShadowBeg() && p < MetaShadowEnd()) mem[MemMeta] += rss; #ifndef SANITIZER_GO else if (p >= HeapMemBeg() && p < HeapMemEnd()) mem[MemHeap] += rss; else if (p >= LoAppMemBeg() && p < LoAppMemEnd()) mem[file ? MemFile : MemMmap] += rss; else if (p >= HiAppMemBeg() && p < HiAppMemEnd()) mem[file ? MemFile : MemMmap] += rss; #else else if (p >= AppMemBeg() && p < AppMemEnd()) mem[file ? MemFile : MemMmap] += rss; #endif else if (p >= TraceMemBeg() && p < TraceMemEnd()) mem[MemTrace] += rss; else mem[MemOther] += rss; } void WriteMemoryProfile(char *buf, uptr buf_size, uptr nthread, uptr nlive) { uptr mem[MemCount]; internal_memset(mem, 0, sizeof(mem[0]) * MemCount); __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7); StackDepotStats *stacks = StackDepotGetStats(); internal_snprintf(buf, buf_size, "RSS %zd MB: shadow:%zd meta:%zd file:%zd mmap:%zd" " trace:%zd heap:%zd other:%zd stacks=%zd[%zd] nthr=%zd/%zd\n", mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20, mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemTrace] >> 20, mem[MemHeap] >> 20, mem[MemOther] >> 20, stacks->allocated >> 20, stacks->n_uniq_ids, nlive, nthread); } #if SANITIZER_LINUX void FlushShadowMemoryCallback( const SuspendedThreadsList &suspended_threads_list, void *argument) { FlushUnneededShadowMemory(ShadowBeg(), ShadowEnd() - ShadowBeg()); } #endif void FlushShadowMemory() { #if SANITIZER_LINUX StopTheWorld(FlushShadowMemoryCallback, 0); #endif } #ifndef SANITIZER_GO // Mark shadow for .rodata sections with the special kShadowRodata marker. // Accesses to .rodata can't race, so this saves time, memory and trace space. static void MapRodata() { // First create temp file. const char *tmpdir = GetEnv("TMPDIR"); if (tmpdir == 0) tmpdir = GetEnv("TEST_TMPDIR"); #ifdef P_tmpdir if (tmpdir == 0) tmpdir = P_tmpdir; #endif if (tmpdir == 0) return; char name[256]; internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d", tmpdir, (int)internal_getpid()); uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600); if (internal_iserror(openrv)) return; internal_unlink(name); // Unlink it now, so that we can reuse the buffer. fd_t fd = openrv; // Fill the file with kShadowRodata. const uptr kMarkerSize = 512 * 1024 / sizeof(u64); InternalScopedBuffer marker(kMarkerSize); // volatile to prevent insertion of memset for (volatile u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++) *p = kShadowRodata; internal_write(fd, marker.data(), marker.size()); // Map the file into memory. uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, fd, 0); if (internal_iserror(page)) { internal_close(fd); return; } // Map the file into shadow of .rodata sections. MemoryMappingLayout proc_maps(/*cache_enabled*/true); uptr start, end, offset, prot; // Reusing the buffer 'name'. while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), &prot)) { if (name[0] != 0 && name[0] != '[' && (prot & MemoryMappingLayout::kProtectionRead) && (prot & MemoryMappingLayout::kProtectionExecute) && !(prot & MemoryMappingLayout::kProtectionWrite) && IsAppMem(start)) { // Assume it's .rodata char *shadow_start = (char*)MemToShadow(start); char *shadow_end = (char*)MemToShadow(end); for (char *p = shadow_start; p < shadow_end; p += marker.size()) { internal_mmap(p, Min(marker.size(), shadow_end - p), PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0); } } } internal_close(fd); } void InitializeShadowMemoryPlatform() { MapRodata(); } static void InitDataSeg() { MemoryMappingLayout proc_maps(true); uptr start, end, offset; char name[128]; #if SANITIZER_FREEBSD // On FreeBSD BSS is usually the last block allocated within the // low range and heap is the last block allocated within the range // 0x800000000-0x8ffffffff. while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), /*protection*/ 0)) { DPrintf("%p-%p %p %s\n", start, end, offset, name); if ((start & 0xffff00000000ULL) == 0 && (end & 0xffff00000000ULL) == 0 && name[0] == '\0') { g_data_start = start; g_data_end = end; } } #else bool prev_is_data = false; while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), /*protection*/ 0)) { DPrintf("%p-%p %p %s\n", start, end, offset, name); bool is_data = offset != 0 && name[0] != 0; // BSS may get merged with [heap] in /proc/self/maps. This is not very // reliable. bool is_bss = offset == 0 && (name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data; if (g_data_start == 0 && is_data) g_data_start = start; if (is_bss) g_data_end = end; prev_is_data = is_data; } #endif DPrintf("guessed data_start=%p data_end=%p\n", g_data_start, g_data_end); CHECK_LT(g_data_start, g_data_end); CHECK_GE((uptr)&g_data_start, g_data_start); CHECK_LT((uptr)&g_data_start, g_data_end); } #endif // #ifndef SANITIZER_GO void InitializePlatformEarly() { #ifdef TSAN_RUNTIME_VMA vmaSize = (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1); #if defined(__aarch64__) if (vmaSize != 39 && vmaSize != 42) { Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); Printf("FATAL: Found %d - Supported 39 and 42\n", vmaSize); Die(); } #elif defined(__powerpc64__) if (vmaSize != 44 && vmaSize != 46) { Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); Printf("FATAL: Found %d - Supported 44 and 46\n", vmaSize); Die(); } #endif #endif } void InitializePlatform() { DisableCoreDumperIfNecessary(); // Go maps shadow memory lazily and works fine with limited address space. // Unlimited stack is not a problem as well, because the executable // is not compiled with -pie. if (kCppMode) { bool reexec = false; // TSan doesn't play well with unlimited stack size (as stack // overlaps with shadow memory). If we detect unlimited stack size, // we re-exec the program with limited stack size as a best effort. if (StackSizeIsUnlimited()) { const uptr kMaxStackSize = 32 * 1024 * 1024; VReport(1, "Program is run with unlimited stack size, which wouldn't " "work with ThreadSanitizer.\n" "Re-execing with stack size limited to %zd bytes.\n", kMaxStackSize); SetStackSizeLimitInBytes(kMaxStackSize); reexec = true; } if (!AddressSpaceIsUnlimited()) { Report("WARNING: Program is run with limited virtual address space," " which wouldn't work with ThreadSanitizer.\n"); Report("Re-execing with unlimited virtual address space.\n"); SetAddressSpaceUnlimited(); reexec = true; } #if SANITIZER_LINUX && defined(__aarch64__) // After patch "arm64: mm: support ARCH_MMAP_RND_BITS." is introduced in // linux kernel, the random gap between stack and mapped area is increased // from 128M to 36G on 39-bit aarch64. As it is almost impossible to cover // this big range, we should disable randomized virtual space on aarch64. int old_personality = personality(0xffffffff); if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) { VReport(1, "WARNING: Program is run with randomized virtual address " "space, which wouldn't work with ThreadSanitizer.\n" "Re-execing with fixed virtual address space.\n"); CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1); reexec = true; } #endif if (reexec) ReExec(); } #ifndef SANITIZER_GO CheckAndProtect(); InitTlsSize(); InitDataSeg(); #endif } bool IsGlobalVar(uptr addr) { return g_data_start && addr >= g_data_start && addr < g_data_end; } #ifndef SANITIZER_GO // Extract file descriptors passed to glibc internal __res_iclose function. // This is required to properly "close" the fds, because we do not see internal // closes within glibc. The code is a pure hack. int ExtractResolvFDs(void *state, int *fds, int nfd) { #if SANITIZER_LINUX && !SANITIZER_ANDROID int cnt = 0; __res_state *statp = (__res_state*)state; for (int i = 0; i < MAXNS && cnt < nfd; i++) { if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1) fds[cnt++] = statp->_u._ext.nssocks[i]; } return cnt; #else return 0; #endif } // Extract file descriptors passed via UNIX domain sockets. // This is requried to properly handle "open" of these fds. // see 'man recvmsg' and 'man 3 cmsg'. int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) { int res = 0; msghdr *msg = (msghdr*)msgp; struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg); for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) continue; int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]); for (int i = 0; i < n; i++) { fds[res++] = ((int*)CMSG_DATA(cmsg))[i]; if (res == nfd) return res; } } return res; } // Note: this function runs with async signals enabled, // so it must not touch any tsan state. int call_pthread_cancel_with_cleanup(int(*fn)(void *c, void *m, void *abstime), void *c, void *m, void *abstime, void(*cleanup)(void *arg), void *arg) { // pthread_cleanup_push/pop are hardcore macros mess. // We can't intercept nor call them w/o including pthread.h. int res; pthread_cleanup_push(cleanup, arg); res = fn(c, m, abstime); pthread_cleanup_pop(0); return res; } #endif #ifndef SANITIZER_GO void ReplaceSystemMalloc() { } #endif #ifndef SANITIZER_GO #if SANITIZER_ANDROID #if defined(__aarch64__) # define __get_tls() \ ({ void** __val; __asm__("mrs %0, tpidr_el0" : "=r"(__val)); __val; }) #elif defined(__x86_64__) # define __get_tls() \ ({ void** __val; __asm__("mov %%fs:0, %0" : "=r"(__val)); __val; }) #else #error unsupported architecture #endif // On Android, __thread is not supported. So we store the pointer to ThreadState // in TLS_SLOT_TSAN, which is the tls slot allocated by Android bionic for tsan. static const int TLS_SLOT_TSAN = 8; // On Android, one thread can call intercepted functions after // DestroyThreadState(), so add a fake thread state for "dead" threads. static ThreadState *dead_thread_state = nullptr; ThreadState *cur_thread() { ThreadState* thr = (ThreadState*)__get_tls()[TLS_SLOT_TSAN]; if (thr == nullptr) { __sanitizer_sigset_t emptyset; internal_sigfillset(&emptyset); __sanitizer_sigset_t oldset; CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset)); thr = reinterpret_cast(__get_tls()[TLS_SLOT_TSAN]); if (thr == nullptr) { thr = reinterpret_cast(MmapOrDie(sizeof(ThreadState), "ThreadState")); __get_tls()[TLS_SLOT_TSAN] = thr; if (dead_thread_state == nullptr) { dead_thread_state = reinterpret_cast( MmapOrDie(sizeof(ThreadState), "ThreadState")); dead_thread_state->fast_state.SetIgnoreBit(); dead_thread_state->ignore_interceptors = 1; dead_thread_state->is_dead = true; *const_cast(&dead_thread_state->tid) = -1; CHECK_EQ(0, internal_mprotect(dead_thread_state, sizeof(ThreadState), PROT_READ)); } } CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr)); } return thr; } void cur_thread_finalize() { __sanitizer_sigset_t emptyset; internal_sigfillset(&emptyset); __sanitizer_sigset_t oldset; CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset)); ThreadState* thr = (ThreadState*)__get_tls()[TLS_SLOT_TSAN]; if (thr != dead_thread_state) { __get_tls()[TLS_SLOT_TSAN] = dead_thread_state; UnmapOrDie(thr, sizeof(ThreadState)); } CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr)); } #endif // SANITIZER_ANDROID #endif // ifndef SANITIZER_GO } // namespace __tsan #endif // SANITIZER_LINUX || SANITIZER_FREEBSD