// Mini-benchmark for tsan VTS worst case performance // Idea: // 1) Spawn M + N threads (M >> N) // We'll call the 'M' threads as 'garbage threads'. // 2) Make sure all threads have created thus no TIDs were reused // 3) Join the garbage threads // 4) Do many sync operations on the remaining N threads // // It turns out that due to O(M+N) VTS complexity the (4) is much slower with // when N is large. // // Some numbers: // a) clang++ native O1 with n_iterations=200kk takes // 5s regardless of M // clang++ tsanv2 O1 with n_iterations=20kk takes // 23.5s with M=200 // 11.5s with M=1 // i.e. tsanv2 is ~23x to ~47x slower than native, depends on M. // b) g++ native O1 with n_iterations=200kk takes // 5.5s regardless of M // g++ tsanv1 O1 with n_iterations=2kk takes // 39.5s with M=200 // 20.5s with M=1 // i.e. tsanv1 is ~370x to ~720x slower than native, depends on M. #include #include #include #include class __attribute__((aligned(64))) Mutex { public: Mutex() { pthread_mutex_init(&m_, NULL); } ~Mutex() { pthread_mutex_destroy(&m_); } void Lock() { pthread_mutex_lock(&m_); } void Unlock() { pthread_mutex_unlock(&m_); } private: pthread_mutex_t m_; }; const int kNumMutexes = 1024; Mutex mutexes[kNumMutexes]; int n_threads, n_iterations; pthread_barrier_t all_threads_ready, main_threads_ready; void* GarbageThread(void *unused) { pthread_barrier_wait(&all_threads_ready); return 0; } void *Thread(void *arg) { long idx = (long)arg; pthread_barrier_wait(&all_threads_ready); // Wait for the main thread to join the garbage threads. pthread_barrier_wait(&main_threads_ready); printf("Thread %ld go!\n", idx); int offset = idx * kNumMutexes / n_threads; for (int i = 0; i < n_iterations; i++) { mutexes[(offset + i) % kNumMutexes].Lock(); mutexes[(offset + i) % kNumMutexes].Unlock(); } printf("Thread %ld done\n", idx); return 0; } int main(int argc, char **argv) { int n_garbage_threads; if (argc == 1) { n_threads = 2; n_garbage_threads = 200; n_iterations = 20000000; } else if (argc == 4) { n_threads = atoi(argv[1]); assert(n_threads > 0 && n_threads <= 32); n_garbage_threads = atoi(argv[2]); assert(n_garbage_threads > 0 && n_garbage_threads <= 16000); n_iterations = atoi(argv[3]); } else { printf("Usage: %s n_threads n_garbage_threads n_iterations\n", argv[0]); return 1; } printf("%s: n_threads=%d n_garbage_threads=%d n_iterations=%d\n", __FILE__, n_threads, n_garbage_threads, n_iterations); pthread_barrier_init(&all_threads_ready, NULL, n_garbage_threads + n_threads + 1); pthread_barrier_init(&main_threads_ready, NULL, n_threads + 1); pthread_t *t = new pthread_t[n_threads]; { pthread_t *g_t = new pthread_t[n_garbage_threads]; for (int i = 0; i < n_garbage_threads; i++) { int status = pthread_create(&g_t[i], 0, GarbageThread, NULL); assert(status == 0); } for (int i = 0; i < n_threads; i++) { int status = pthread_create(&t[i], 0, Thread, (void*)i); assert(status == 0); } pthread_barrier_wait(&all_threads_ready); printf("All threads started! Killing the garbage threads.\n"); for (int i = 0; i < n_garbage_threads; i++) { pthread_join(g_t[i], 0); } delete [] g_t; } printf("Resuming the main threads.\n"); pthread_barrier_wait(&main_threads_ready); for (int i = 0; i < n_threads; i++) { pthread_join(t[i], 0); } delete [] t; return 0; }