//===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// Scudo Hardened Allocator implementation. /// It uses the sanitizer_common allocator as a base and aims at mitigating /// heap corruption vulnerabilities. It provides a checksum-guarded chunk /// header, a delayed free list, and additional sanity checks. /// //===----------------------------------------------------------------------===// #include "scudo_allocator.h" #include "scudo_crc32.h" #include "scudo_tls.h" #include "scudo_utils.h" #include "sanitizer_common/sanitizer_allocator_checks.h" #include "sanitizer_common/sanitizer_allocator_interface.h" #include "sanitizer_common/sanitizer_errno.h" #include "sanitizer_common/sanitizer_quarantine.h" #include namespace __scudo { // Global static cookie, initialized at start-up. static uptr Cookie; // We default to software CRC32 if the alternatives are not supported, either // at compilation or at runtime. static atomic_uint8_t HashAlgorithm = { CRC32Software }; INLINE u32 computeCRC32(uptr Crc, uptr Value, uptr *Array, uptr ArraySize) { // If the hardware CRC32 feature is defined here, it was enabled everywhere, // as opposed to only for scudo_crc32.cpp. This means that other hardware // specific instructions were likely emitted at other places, and as a // result there is no reason to not use it here. #if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32) Crc = CRC32_INTRINSIC(Crc, Value); for (uptr i = 0; i < ArraySize; i++) Crc = CRC32_INTRINSIC(Crc, Array[i]); return Crc; #else if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) { Crc = computeHardwareCRC32(Crc, Value); for (uptr i = 0; i < ArraySize; i++) Crc = computeHardwareCRC32(Crc, Array[i]); return Crc; } Crc = computeSoftwareCRC32(Crc, Value); for (uptr i = 0; i < ArraySize; i++) Crc = computeSoftwareCRC32(Crc, Array[i]); return Crc; #endif // defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32) } static ScudoBackendAllocator &getBackendAllocator(); struct ScudoChunk : UnpackedHeader { // We can't use the offset member of the chunk itself, as we would double // fetch it without any warranty that it wouldn't have been tampered. To // prevent this, we work with a local copy of the header. void *getAllocBeg(UnpackedHeader *Header) { return reinterpret_cast( reinterpret_cast(this) - (Header->Offset << MinAlignmentLog)); } // Returns the usable size for a chunk, meaning the amount of bytes from the // beginning of the user data to the end of the backend allocated chunk. uptr getUsableSize(UnpackedHeader *Header) { uptr Size = getBackendAllocator().getActuallyAllocatedSize(getAllocBeg(Header), Header->FromPrimary); if (Size == 0) return 0; return Size - AlignedChunkHeaderSize - (Header->Offset << MinAlignmentLog); } // Compute the checksum of the Chunk pointer and its ChunkHeader. u16 computeChecksum(UnpackedHeader *Header) const { UnpackedHeader ZeroChecksumHeader = *Header; ZeroChecksumHeader.Checksum = 0; uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)]; memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder)); u32 Crc = computeCRC32(Cookie, reinterpret_cast(this), HeaderHolder, ARRAY_SIZE(HeaderHolder)); return static_cast(Crc); } // Checks the validity of a chunk by verifying its checksum. It doesn't // incur termination in the event of an invalid chunk. bool isValid() { UnpackedHeader NewUnpackedHeader; const AtomicPackedHeader *AtomicHeader = reinterpret_cast(this); PackedHeader NewPackedHeader = atomic_load_relaxed(AtomicHeader); NewUnpackedHeader = bit_cast(NewPackedHeader); return (NewUnpackedHeader.Checksum == computeChecksum(&NewUnpackedHeader)); } // Nulls out a chunk header. When returning the chunk to the backend, there // is no need to store a valid ChunkAvailable header, as this would be // computationally expensive. Zeroing out serves the same purpose by making // the header invalid. In the extremely rare event where 0 would be a valid // checksum for the chunk, the state of the chunk is ChunkAvailable anyway. COMPILER_CHECK(ChunkAvailable == 0); void eraseHeader() { PackedHeader NullPackedHeader = 0; AtomicPackedHeader *AtomicHeader = reinterpret_cast(this); atomic_store_relaxed(AtomicHeader, NullPackedHeader); } // Loads and unpacks the header, verifying the checksum in the process. void loadHeader(UnpackedHeader *NewUnpackedHeader) const { const AtomicPackedHeader *AtomicHeader = reinterpret_cast(this); PackedHeader NewPackedHeader = atomic_load_relaxed(AtomicHeader); *NewUnpackedHeader = bit_cast(NewPackedHeader); if (UNLIKELY(NewUnpackedHeader->Checksum != computeChecksum(NewUnpackedHeader))) { dieWithMessage("ERROR: corrupted chunk header at address %p\n", this); } } // Packs and stores the header, computing the checksum in the process. void storeHeader(UnpackedHeader *NewUnpackedHeader) { NewUnpackedHeader->Checksum = computeChecksum(NewUnpackedHeader); PackedHeader NewPackedHeader = bit_cast(*NewUnpackedHeader); AtomicPackedHeader *AtomicHeader = reinterpret_cast(this); atomic_store_relaxed(AtomicHeader, NewPackedHeader); } // Packs and stores the header, computing the checksum in the process. We // compare the current header with the expected provided one to ensure that // we are not being raced by a corruption occurring in another thread. void compareExchangeHeader(UnpackedHeader *NewUnpackedHeader, UnpackedHeader *OldUnpackedHeader) { NewUnpackedHeader->Checksum = computeChecksum(NewUnpackedHeader); PackedHeader NewPackedHeader = bit_cast(*NewUnpackedHeader); PackedHeader OldPackedHeader = bit_cast(*OldUnpackedHeader); AtomicPackedHeader *AtomicHeader = reinterpret_cast(this); if (UNLIKELY(!atomic_compare_exchange_strong(AtomicHeader, &OldPackedHeader, NewPackedHeader, memory_order_relaxed))) { dieWithMessage("ERROR: race on chunk header at address %p\n", this); } } }; ScudoChunk *getScudoChunk(uptr UserBeg) { return reinterpret_cast(UserBeg - AlignedChunkHeaderSize); } struct AllocatorOptions { u32 QuarantineSizeMb; u32 ThreadLocalQuarantineSizeKb; bool MayReturnNull; s32 ReleaseToOSIntervalMs; bool DeallocationTypeMismatch; bool DeleteSizeMismatch; bool ZeroContents; void setFrom(const Flags *f, const CommonFlags *cf); void copyTo(Flags *f, CommonFlags *cf) const; }; void AllocatorOptions::setFrom(const Flags *f, const CommonFlags *cf) { MayReturnNull = cf->allocator_may_return_null; ReleaseToOSIntervalMs = cf->allocator_release_to_os_interval_ms; QuarantineSizeMb = f->QuarantineSizeMb; ThreadLocalQuarantineSizeKb = f->ThreadLocalQuarantineSizeKb; DeallocationTypeMismatch = f->DeallocationTypeMismatch; DeleteSizeMismatch = f->DeleteSizeMismatch; ZeroContents = f->ZeroContents; } void AllocatorOptions::copyTo(Flags *f, CommonFlags *cf) const { cf->allocator_may_return_null = MayReturnNull; cf->allocator_release_to_os_interval_ms = ReleaseToOSIntervalMs; f->QuarantineSizeMb = QuarantineSizeMb; f->ThreadLocalQuarantineSizeKb = ThreadLocalQuarantineSizeKb; f->DeallocationTypeMismatch = DeallocationTypeMismatch; f->DeleteSizeMismatch = DeleteSizeMismatch; f->ZeroContents = ZeroContents; } static void initScudoInternal(const AllocatorOptions &Options); static bool ScudoInitIsRunning = false; void initScudo() { SanitizerToolName = "Scudo"; CHECK(!ScudoInitIsRunning && "Scudo init calls itself!"); ScudoInitIsRunning = true; // Check if hardware CRC32 is supported in the binary and by the platform, if // so, opt for the CRC32 hardware version of the checksum. if (computeHardwareCRC32 && testCPUFeature(CRC32CPUFeature)) atomic_store_relaxed(&HashAlgorithm, CRC32Hardware); initFlags(); AllocatorOptions Options; Options.setFrom(getFlags(), common_flags()); initScudoInternal(Options); // TODO(kostyak): determine if MaybeStartBackgroudThread could be of some use. ScudoInitIsRunning = false; } struct QuarantineCallback { explicit QuarantineCallback(AllocatorCache *Cache) : Cache_(Cache) {} // Chunk recycling function, returns a quarantined chunk to the backend, // first making sure it hasn't been tampered with. void Recycle(ScudoChunk *Chunk) { UnpackedHeader Header; Chunk->loadHeader(&Header); if (UNLIKELY(Header.State != ChunkQuarantine)) { dieWithMessage("ERROR: invalid chunk state when recycling address %p\n", Chunk); } Chunk->eraseHeader(); void *Ptr = Chunk->getAllocBeg(&Header); if (Header.FromPrimary) getBackendAllocator().deallocatePrimary(Cache_, Ptr); else getBackendAllocator().deallocateSecondary(Ptr); } // Internal quarantine allocation and deallocation functions. We first check // that the batches are indeed serviced by the Primary. // TODO(kostyak): figure out the best way to protect the batches. COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize); void *Allocate(uptr Size) { return getBackendAllocator().allocatePrimary(Cache_, Size); } void Deallocate(void *Ptr) { getBackendAllocator().deallocatePrimary(Cache_, Ptr); } AllocatorCache *Cache_; }; typedef Quarantine ScudoQuarantine; typedef ScudoQuarantine::Cache ScudoQuarantineCache; COMPILER_CHECK(sizeof(ScudoQuarantineCache) <= sizeof(ScudoThreadContext::QuarantineCachePlaceHolder)); AllocatorCache *getAllocatorCache(ScudoThreadContext *ThreadContext) { return &ThreadContext->Cache; } ScudoQuarantineCache *getQuarantineCache(ScudoThreadContext *ThreadContext) { return reinterpret_cast< ScudoQuarantineCache *>(ThreadContext->QuarantineCachePlaceHolder); } ScudoPrng *getPrng(ScudoThreadContext *ThreadContext) { return &ThreadContext->Prng; } struct ScudoAllocator { static const uptr MaxAllowedMallocSize = FIRST_32_SECOND_64(2UL << 30, 1ULL << 40); typedef ReturnNullOrDieOnFailure FailureHandler; ScudoBackendAllocator BackendAllocator; ScudoQuarantine AllocatorQuarantine; StaticSpinMutex GlobalPrngMutex; ScudoPrng GlobalPrng; // The fallback caches are used when the thread local caches have been // 'detroyed' on thread tear-down. They are protected by a Mutex as they can // be accessed by different threads. StaticSpinMutex FallbackMutex; AllocatorCache FallbackAllocatorCache; ScudoQuarantineCache FallbackQuarantineCache; ScudoPrng FallbackPrng; bool DeallocationTypeMismatch; bool ZeroContents; bool DeleteSizeMismatch; explicit ScudoAllocator(LinkerInitialized) : AllocatorQuarantine(LINKER_INITIALIZED), FallbackQuarantineCache(LINKER_INITIALIZED) {} void init(const AllocatorOptions &Options) { // Verify that the header offset field can hold the maximum offset. In the // case of the Secondary allocator, it takes care of alignment and the // offset will always be 0. In the case of the Primary, the worst case // scenario happens in the last size class, when the backend allocation // would already be aligned on the requested alignment, which would happen // to be the maximum alignment that would fit in that size class. As a // result, the maximum offset will be at most the maximum alignment for the // last size class minus the header size, in multiples of MinAlignment. UnpackedHeader Header = {}; uptr MaxPrimaryAlignment = 1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment); uptr MaxOffset = (MaxPrimaryAlignment - AlignedChunkHeaderSize) >> MinAlignmentLog; Header.Offset = MaxOffset; if (Header.Offset != MaxOffset) { dieWithMessage("ERROR: the maximum possible offset doesn't fit in the " "header\n"); } // Verify that we can fit the maximum size or amount of unused bytes in the // header. Given that the Secondary fits the allocation to a page, the worst // case scenario happens in the Primary. It will depend on the second to // last and last class sizes, as well as the dynamic base for the Primary. // The following is an over-approximation that works for our needs. uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1; Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes; if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes) { dieWithMessage("ERROR: the maximum possible unused bytes doesn't fit in " "the header\n"); } DeallocationTypeMismatch = Options.DeallocationTypeMismatch; DeleteSizeMismatch = Options.DeleteSizeMismatch; ZeroContents = Options.ZeroContents; SetAllocatorMayReturnNull(Options.MayReturnNull); BackendAllocator.init(Options.ReleaseToOSIntervalMs); AllocatorQuarantine.Init( static_cast(Options.QuarantineSizeMb) << 20, static_cast(Options.ThreadLocalQuarantineSizeKb) << 10); GlobalPrng.init(); Cookie = GlobalPrng.getU64(); BackendAllocator.initCache(&FallbackAllocatorCache); FallbackPrng.init(); } // Helper function that checks for a valid Scudo chunk. nullptr isn't. bool isValidPointer(const void *UserPtr) { initThreadMaybe(); if (UNLIKELY(!UserPtr)) return false; uptr UserBeg = reinterpret_cast(UserPtr); if (!IsAligned(UserBeg, MinAlignment)) return false; return getScudoChunk(UserBeg)->isValid(); } // Allocates a chunk. void *allocate(uptr Size, uptr Alignment, AllocType Type, bool ForceZeroContents = false) { initThreadMaybe(); if (UNLIKELY(Alignment > MaxAlignment)) return FailureHandler::OnBadRequest(); if (UNLIKELY(Alignment < MinAlignment)) Alignment = MinAlignment; if (UNLIKELY(Size >= MaxAllowedMallocSize)) return FailureHandler::OnBadRequest(); if (UNLIKELY(Size == 0)) Size = 1; uptr NeededSize = RoundUpTo(Size, MinAlignment) + AlignedChunkHeaderSize; uptr AlignedSize = (Alignment > MinAlignment) ? NeededSize + (Alignment - AlignedChunkHeaderSize) : NeededSize; if (UNLIKELY(AlignedSize >= MaxAllowedMallocSize)) return FailureHandler::OnBadRequest(); // Primary and Secondary backed allocations have a different treatment. We // deal with alignment requirements of Primary serviced allocations here, // but the Secondary will take care of its own alignment needs. bool FromPrimary = PrimaryAllocator::CanAllocate(AlignedSize, MinAlignment); void *Ptr; u8 Salt; uptr AllocSize; if (FromPrimary) { AllocSize = AlignedSize; ScudoThreadContext *ThreadContext = getThreadContextAndLock(); if (LIKELY(ThreadContext)) { Salt = getPrng(ThreadContext)->getU8(); Ptr = BackendAllocator.allocatePrimary(getAllocatorCache(ThreadContext), AllocSize); ThreadContext->unlock(); } else { SpinMutexLock l(&FallbackMutex); Salt = FallbackPrng.getU8(); Ptr = BackendAllocator.allocatePrimary(&FallbackAllocatorCache, AllocSize); } } else { { SpinMutexLock l(&GlobalPrngMutex); Salt = GlobalPrng.getU8(); } AllocSize = NeededSize; Ptr = BackendAllocator.allocateSecondary(AllocSize, Alignment); } if (UNLIKELY(!Ptr)) return FailureHandler::OnOOM(); // If requested, we will zero out the entire contents of the returned chunk. if ((ForceZeroContents || ZeroContents) && FromPrimary) memset(Ptr, 0, BackendAllocator.getActuallyAllocatedSize( Ptr, /*FromPrimary=*/true)); UnpackedHeader Header = {}; uptr AllocBeg = reinterpret_cast(Ptr); uptr UserBeg = AllocBeg + AlignedChunkHeaderSize; if (UNLIKELY(!IsAligned(UserBeg, Alignment))) { // Since the Secondary takes care of alignment, a non-aligned pointer // means it is from the Primary. It is also the only case where the offset // field of the header would be non-zero. CHECK(FromPrimary); UserBeg = RoundUpTo(UserBeg, Alignment); uptr Offset = UserBeg - AlignedChunkHeaderSize - AllocBeg; Header.Offset = Offset >> MinAlignmentLog; } CHECK_LE(UserBeg + Size, AllocBeg + AllocSize); Header.State = ChunkAllocated; Header.AllocType = Type; if (FromPrimary) { Header.FromPrimary = 1; Header.SizeOrUnusedBytes = Size; } else { // The secondary fits the allocations to a page, so the amount of unused // bytes is the difference between the end of the user allocation and the // next page boundary. uptr PageSize = GetPageSizeCached(); uptr TrailingBytes = (UserBeg + Size) & (PageSize - 1); if (TrailingBytes) Header.SizeOrUnusedBytes = PageSize - TrailingBytes; } Header.Salt = Salt; getScudoChunk(UserBeg)->storeHeader(&Header); void *UserPtr = reinterpret_cast(UserBeg); // if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(UserPtr, Size); return UserPtr; } // Place a chunk in the quarantine. In the event of a zero-sized quarantine, // we directly deallocate the chunk, otherwise the flow would lead to the // chunk being loaded (and checked) twice, and stored (and checksummed) once, // with no additional security value. void quarantineOrDeallocateChunk(ScudoChunk *Chunk, UnpackedHeader *Header, uptr Size) { bool FromPrimary = Header->FromPrimary; bool BypassQuarantine = (AllocatorQuarantine.GetCacheSize() == 0); if (BypassQuarantine) { Chunk->eraseHeader(); void *Ptr = Chunk->getAllocBeg(Header); if (FromPrimary) { ScudoThreadContext *ThreadContext = getThreadContextAndLock(); if (LIKELY(ThreadContext)) { getBackendAllocator().deallocatePrimary( getAllocatorCache(ThreadContext), Ptr); ThreadContext->unlock(); } else { SpinMutexLock Lock(&FallbackMutex); getBackendAllocator().deallocatePrimary(&FallbackAllocatorCache, Ptr); } } else { getBackendAllocator().deallocateSecondary(Ptr); } } else { UnpackedHeader NewHeader = *Header; NewHeader.State = ChunkQuarantine; Chunk->compareExchangeHeader(&NewHeader, Header); ScudoThreadContext *ThreadContext = getThreadContextAndLock(); if (LIKELY(ThreadContext)) { AllocatorQuarantine.Put(getQuarantineCache(ThreadContext), QuarantineCallback( getAllocatorCache(ThreadContext)), Chunk, Size); ThreadContext->unlock(); } else { SpinMutexLock l(&FallbackMutex); AllocatorQuarantine.Put(&FallbackQuarantineCache, QuarantineCallback(&FallbackAllocatorCache), Chunk, Size); } } } // Deallocates a Chunk, which means adding it to the delayed free list (or // Quarantine). void deallocate(void *UserPtr, uptr DeleteSize, AllocType Type) { initThreadMaybe(); // if (&__sanitizer_free_hook) __sanitizer_free_hook(UserPtr); if (UNLIKELY(!UserPtr)) return; uptr UserBeg = reinterpret_cast(UserPtr); if (UNLIKELY(!IsAligned(UserBeg, MinAlignment))) { dieWithMessage("ERROR: attempted to deallocate a chunk not properly " "aligned at address %p\n", UserPtr); } ScudoChunk *Chunk = getScudoChunk(UserBeg); UnpackedHeader OldHeader; Chunk->loadHeader(&OldHeader); if (UNLIKELY(OldHeader.State != ChunkAllocated)) { dieWithMessage("ERROR: invalid chunk state when deallocating address " "%p\n", UserPtr); } if (DeallocationTypeMismatch) { // The deallocation type has to match the allocation one. if (OldHeader.AllocType != Type) { // With the exception of memalign'd Chunks, that can be still be free'd. if (OldHeader.AllocType != FromMemalign || Type != FromMalloc) { dieWithMessage("ERROR: allocation type mismatch on address %p\n", UserPtr); } } } uptr Size = OldHeader.FromPrimary ? OldHeader.SizeOrUnusedBytes : Chunk->getUsableSize(&OldHeader) - OldHeader.SizeOrUnusedBytes; if (DeleteSizeMismatch) { if (DeleteSize && DeleteSize != Size) { dieWithMessage("ERROR: invalid sized delete on chunk at address %p\n", UserPtr); } } // If a small memory amount was allocated with a larger alignment, we want // to take that into account. Otherwise the Quarantine would be filled with // tiny chunks, taking a lot of VA memory. This is an approximation of the // usable size, that allows us to not call GetActuallyAllocatedSize. uptr LiableSize = Size + (OldHeader.Offset << MinAlignment); quarantineOrDeallocateChunk(Chunk, &OldHeader, LiableSize); } // Reallocates a chunk. We can save on a new allocation if the new requested // size still fits in the chunk. void *reallocate(void *OldPtr, uptr NewSize) { initThreadMaybe(); uptr UserBeg = reinterpret_cast(OldPtr); if (UNLIKELY(!IsAligned(UserBeg, MinAlignment))) { dieWithMessage("ERROR: attempted to reallocate a chunk not properly " "aligned at address %p\n", OldPtr); } ScudoChunk *Chunk = getScudoChunk(UserBeg); UnpackedHeader OldHeader; Chunk->loadHeader(&OldHeader); if (UNLIKELY(OldHeader.State != ChunkAllocated)) { dieWithMessage("ERROR: invalid chunk state when reallocating address " "%p\n", OldPtr); } if (UNLIKELY(OldHeader.AllocType != FromMalloc)) { dieWithMessage("ERROR: invalid chunk type when reallocating address %p\n", OldPtr); } uptr UsableSize = Chunk->getUsableSize(&OldHeader); // The new size still fits in the current chunk, and the size difference // is reasonable. if (NewSize <= UsableSize && (UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) { UnpackedHeader NewHeader = OldHeader; NewHeader.SizeOrUnusedBytes = OldHeader.FromPrimary ? NewSize : UsableSize - NewSize; Chunk->compareExchangeHeader(&NewHeader, &OldHeader); return OldPtr; } // Otherwise, we have to allocate a new chunk and copy the contents of the // old one. void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc); if (NewPtr) { uptr OldSize = OldHeader.FromPrimary ? OldHeader.SizeOrUnusedBytes : UsableSize - OldHeader.SizeOrUnusedBytes; memcpy(NewPtr, OldPtr, Min(NewSize, OldSize)); quarantineOrDeallocateChunk(Chunk, &OldHeader, UsableSize); } return NewPtr; } // Helper function that returns the actual usable size of a chunk. uptr getUsableSize(const void *Ptr) { initThreadMaybe(); if (UNLIKELY(!Ptr)) return 0; uptr UserBeg = reinterpret_cast(Ptr); ScudoChunk *Chunk = getScudoChunk(UserBeg); UnpackedHeader Header; Chunk->loadHeader(&Header); // Getting the usable size of a chunk only makes sense if it's allocated. if (UNLIKELY(Header.State != ChunkAllocated)) { dieWithMessage("ERROR: invalid chunk state when sizing address %p\n", Ptr); } return Chunk->getUsableSize(&Header); } void *calloc(uptr NMemB, uptr Size) { initThreadMaybe(); if (UNLIKELY(CheckForCallocOverflow(NMemB, Size))) return FailureHandler::OnBadRequest(); return allocate(NMemB * Size, MinAlignment, FromMalloc, true); } void commitBack(ScudoThreadContext *ThreadContext) { AllocatorCache *Cache = getAllocatorCache(ThreadContext); AllocatorQuarantine.Drain(getQuarantineCache(ThreadContext), QuarantineCallback(Cache)); BackendAllocator.destroyCache(Cache); } uptr getStats(AllocatorStat StatType) { initThreadMaybe(); uptr stats[AllocatorStatCount]; BackendAllocator.getStats(stats); return stats[StatType]; } }; static ScudoAllocator Instance(LINKER_INITIALIZED); static ScudoBackendAllocator &getBackendAllocator() { return Instance.BackendAllocator; } static void initScudoInternal(const AllocatorOptions &Options) { Instance.init(Options); } void ScudoThreadContext::init() { getBackendAllocator().initCache(&Cache); Prng.init(); memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder)); } void ScudoThreadContext::commitBack() { Instance.commitBack(this); } void *scudoMalloc(uptr Size, AllocType Type) { return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, Type)); } void scudoFree(void *Ptr, AllocType Type) { Instance.deallocate(Ptr, 0, Type); } void scudoSizedFree(void *Ptr, uptr Size, AllocType Type) { Instance.deallocate(Ptr, Size, Type); } void *scudoRealloc(void *Ptr, uptr Size) { if (!Ptr) return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc)); if (Size == 0) { Instance.deallocate(Ptr, 0, FromMalloc); return nullptr; } return SetErrnoOnNull(Instance.reallocate(Ptr, Size)); } void *scudoCalloc(uptr NMemB, uptr Size) { return SetErrnoOnNull(Instance.calloc(NMemB, Size)); } void *scudoValloc(uptr Size) { return SetErrnoOnNull( Instance.allocate(Size, GetPageSizeCached(), FromMemalign)); } void *scudoPvalloc(uptr Size) { uptr PageSize = GetPageSizeCached(); // pvalloc(0) should allocate one page. Size = Size ? RoundUpTo(Size, PageSize) : PageSize; return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign)); } void *scudoMemalign(uptr Alignment, uptr Size) { if (UNLIKELY(!IsPowerOfTwo(Alignment))) { errno = errno_EINVAL; return ScudoAllocator::FailureHandler::OnBadRequest(); } return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMemalign)); } int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) { if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) { ScudoAllocator::FailureHandler::OnBadRequest(); return errno_EINVAL; } void *Ptr = Instance.allocate(Size, Alignment, FromMemalign); if (UNLIKELY(!Ptr)) return errno_ENOMEM; *MemPtr = Ptr; return 0; } void *scudoAlignedAlloc(uptr Alignment, uptr Size) { if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) { errno = errno_EINVAL; return ScudoAllocator::FailureHandler::OnBadRequest(); } return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc)); } uptr scudoMallocUsableSize(void *Ptr) { return Instance.getUsableSize(Ptr); } } // namespace __scudo using namespace __scudo; // MallocExtension helper functions uptr __sanitizer_get_current_allocated_bytes() { return Instance.getStats(AllocatorStatAllocated); } uptr __sanitizer_get_heap_size() { return Instance.getStats(AllocatorStatMapped); } uptr __sanitizer_get_free_bytes() { return 1; } uptr __sanitizer_get_unmapped_bytes() { return 1; } uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } int __sanitizer_get_ownership(const void *Ptr) { return Instance.isValidPointer(Ptr); } uptr __sanitizer_get_allocated_size(const void *Ptr) { return Instance.getUsableSize(Ptr); }