//===-- sanitizer_common_test.cc ------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer/AddressSanitizer runtime. // //===----------------------------------------------------------------------===// #include #include "sanitizer_common/sanitizer_allocator_internal.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_file.h" #include "sanitizer_common/sanitizer_flags.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_platform.h" #include "sanitizer_pthread_wrappers.h" #include "gtest/gtest.h" namespace __sanitizer { static bool IsSorted(const uptr *array, uptr n) { for (uptr i = 1; i < n; i++) { if (array[i] < array[i - 1]) return false; } return true; } TEST(SanitizerCommon, SortTest) { uptr array[100]; uptr n = 100; // Already sorted. for (uptr i = 0; i < n; i++) { array[i] = i; } SortArray(array, n); EXPECT_TRUE(IsSorted(array, n)); // Reverse order. for (uptr i = 0; i < n; i++) { array[i] = n - 1 - i; } SortArray(array, n); EXPECT_TRUE(IsSorted(array, n)); // Mixed order. for (uptr i = 0; i < n; i++) { array[i] = (i % 2 == 0) ? i : n - 1 - i; } SortArray(array, n); EXPECT_TRUE(IsSorted(array, n)); // All equal. for (uptr i = 0; i < n; i++) { array[i] = 42; } SortArray(array, n); EXPECT_TRUE(IsSorted(array, n)); // All but one sorted. for (uptr i = 0; i < n - 1; i++) { array[i] = i; } array[n - 1] = 42; SortArray(array, n); EXPECT_TRUE(IsSorted(array, n)); // Minimal case - sort three elements. array[0] = 1; array[1] = 0; SortArray(array, 2); EXPECT_TRUE(IsSorted(array, 2)); } TEST(SanitizerCommon, MmapAlignedOrDieOnFatalError) { uptr PageSize = GetPageSizeCached(); for (uptr size = 1; size <= 32; size *= 2) { for (uptr alignment = 1; alignment <= 32; alignment *= 2) { for (int iter = 0; iter < 100; iter++) { uptr res = (uptr)MmapAlignedOrDieOnFatalError( size * PageSize, alignment * PageSize, "MmapAlignedOrDieTest"); EXPECT_EQ(0U, res % (alignment * PageSize)); internal_memset((void*)res, 1, size * PageSize); UnmapOrDie((void*)res, size * PageSize); } } } } #if SANITIZER_LINUX TEST(SanitizerCommon, SanitizerSetThreadName) { const char *names[] = { "0123456789012", "01234567890123", "012345678901234", // Larger names will be truncated on linux. }; for (size_t i = 0; i < ARRAY_SIZE(names); i++) { EXPECT_TRUE(SanitizerSetThreadName(names[i])); char buff[100]; EXPECT_TRUE(SanitizerGetThreadName(buff, sizeof(buff) - 1)); EXPECT_EQ(0, internal_strcmp(buff, names[i])); } } #endif TEST(SanitizerCommon, InternalMmapVector) { InternalMmapVector vector(1); for (uptr i = 0; i < 100; i++) { EXPECT_EQ(i, vector.size()); vector.push_back(i); } for (uptr i = 0; i < 100; i++) { EXPECT_EQ(i, vector[i]); } for (int i = 99; i >= 0; i--) { EXPECT_EQ((uptr)i, vector.back()); vector.pop_back(); EXPECT_EQ((uptr)i, vector.size()); } InternalMmapVector empty_vector(0); CHECK_GT(empty_vector.capacity(), 0U); CHECK_EQ(0U, empty_vector.size()); } void TestThreadInfo(bool main) { uptr stk_addr = 0; uptr stk_size = 0; uptr tls_addr = 0; uptr tls_size = 0; GetThreadStackAndTls(main, &stk_addr, &stk_size, &tls_addr, &tls_size); int stack_var; EXPECT_NE(stk_addr, (uptr)0); EXPECT_NE(stk_size, (uptr)0); EXPECT_GT((uptr)&stack_var, stk_addr); EXPECT_LT((uptr)&stack_var, stk_addr + stk_size); #if SANITIZER_LINUX && defined(__x86_64__) static __thread int thread_var; EXPECT_NE(tls_addr, (uptr)0); EXPECT_NE(tls_size, (uptr)0); EXPECT_GT((uptr)&thread_var, tls_addr); EXPECT_LT((uptr)&thread_var, tls_addr + tls_size); // Ensure that tls and stack do not intersect. uptr tls_end = tls_addr + tls_size; EXPECT_TRUE(tls_addr < stk_addr || tls_addr >= stk_addr + stk_size); EXPECT_TRUE(tls_end < stk_addr || tls_end >= stk_addr + stk_size); EXPECT_TRUE((tls_addr < stk_addr) == (tls_end < stk_addr)); #endif } static void *WorkerThread(void *arg) { TestThreadInfo(false); return 0; } TEST(SanitizerCommon, ThreadStackTlsMain) { InitTlsSize(); TestThreadInfo(true); } TEST(SanitizerCommon, ThreadStackTlsWorker) { InitTlsSize(); pthread_t t; PTHREAD_CREATE(&t, 0, WorkerThread, 0); PTHREAD_JOIN(t, 0); } bool UptrLess(uptr a, uptr b) { return a < b; } TEST(SanitizerCommon, InternalLowerBound) { static const uptr kSize = 5; int arr[kSize]; arr[0] = 1; arr[1] = 3; arr[2] = 5; arr[3] = 7; arr[4] = 11; EXPECT_EQ(0u, InternalLowerBound(arr, 0, kSize, 0, UptrLess)); EXPECT_EQ(0u, InternalLowerBound(arr, 0, kSize, 1, UptrLess)); EXPECT_EQ(1u, InternalLowerBound(arr, 0, kSize, 2, UptrLess)); EXPECT_EQ(1u, InternalLowerBound(arr, 0, kSize, 3, UptrLess)); EXPECT_EQ(2u, InternalLowerBound(arr, 0, kSize, 4, UptrLess)); EXPECT_EQ(2u, InternalLowerBound(arr, 0, kSize, 5, UptrLess)); EXPECT_EQ(3u, InternalLowerBound(arr, 0, kSize, 6, UptrLess)); EXPECT_EQ(3u, InternalLowerBound(arr, 0, kSize, 7, UptrLess)); EXPECT_EQ(4u, InternalLowerBound(arr, 0, kSize, 8, UptrLess)); EXPECT_EQ(4u, InternalLowerBound(arr, 0, kSize, 9, UptrLess)); EXPECT_EQ(4u, InternalLowerBound(arr, 0, kSize, 10, UptrLess)); EXPECT_EQ(4u, InternalLowerBound(arr, 0, kSize, 11, UptrLess)); EXPECT_EQ(5u, InternalLowerBound(arr, 0, kSize, 12, UptrLess)); } TEST(SanitizerCommon, InternalLowerBoundVsStdLowerBound) { std::vector data; auto create_item = [] (size_t i, size_t j) { auto v = i * 10000 + j; return ((v << 6) + (v >> 6) + 0x9e3779b9) % 100; }; for (size_t i = 0; i < 1000; ++i) { data.resize(i); for (size_t j = 0; j < i; ++j) { data[j] = create_item(i, j); } std::sort(data.begin(), data.end()); for (size_t j = 0; j < i; ++j) { int val = create_item(i, j); for (auto to_find : {val - 1, val, val + 1}) { uptr expected = std::lower_bound(data.begin(), data.end(), to_find) - data.begin(); EXPECT_EQ(expected, InternalLowerBound(data.data(), 0, data.size(), to_find, std::less())); } } } } #if SANITIZER_LINUX && !SANITIZER_ANDROID TEST(SanitizerCommon, FindPathToBinary) { char *true_path = FindPathToBinary("true"); EXPECT_NE((char*)0, internal_strstr(true_path, "/bin/true")); InternalFree(true_path); EXPECT_EQ(0, FindPathToBinary("unexisting_binary.ergjeorj")); } #elif SANITIZER_WINDOWS TEST(SanitizerCommon, FindPathToBinary) { // ntdll.dll should be on PATH in all supported test environments on all // supported Windows versions. char *ntdll_path = FindPathToBinary("ntdll.dll"); EXPECT_NE((char*)0, internal_strstr(ntdll_path, "ntdll.dll")); InternalFree(ntdll_path); EXPECT_EQ(0, FindPathToBinary("unexisting_binary.ergjeorj")); } #endif TEST(SanitizerCommon, StripPathPrefix) { EXPECT_EQ(0, StripPathPrefix(0, "prefix")); EXPECT_STREQ("foo", StripPathPrefix("foo", 0)); EXPECT_STREQ("dir/file.cc", StripPathPrefix("/usr/lib/dir/file.cc", "/usr/lib/")); EXPECT_STREQ("/file.cc", StripPathPrefix("/usr/myroot/file.cc", "/myroot")); EXPECT_STREQ("file.h", StripPathPrefix("/usr/lib/./file.h", "/usr/lib/")); } TEST(SanitizerCommon, RemoveANSIEscapeSequencesFromString) { RemoveANSIEscapeSequencesFromString(nullptr); const char *buffs[22] = { "Default", "Default", "\033[95mLight magenta", "Light magenta", "\033[30mBlack\033[32mGreen\033[90mGray", "BlackGreenGray", "\033[106mLight cyan \033[107mWhite ", "Light cyan White ", "\033[31mHello\033[0m World", "Hello World", "\033[38;5;82mHello \033[38;5;198mWorld", "Hello World", "123[653456789012", "123[653456789012", "Normal \033[5mBlink \033[25mNormal", "Normal Blink Normal", "\033[106m\033[107m", "", "", "", " ", " ", }; for (size_t i = 0; i < ARRAY_SIZE(buffs); i+=2) { char *buffer_copy = internal_strdup(buffs[i]); RemoveANSIEscapeSequencesFromString(buffer_copy); EXPECT_STREQ(buffer_copy, buffs[i+1]); InternalFree(buffer_copy); } } TEST(SanitizerCommon, InternalScopedString) { InternalScopedString str(10); EXPECT_EQ(0U, str.length()); EXPECT_STREQ("", str.data()); str.append("foo"); EXPECT_EQ(3U, str.length()); EXPECT_STREQ("foo", str.data()); int x = 1234; str.append("%d", x); EXPECT_EQ(7U, str.length()); EXPECT_STREQ("foo1234", str.data()); str.append("%d", x); EXPECT_EQ(9U, str.length()); EXPECT_STREQ("foo123412", str.data()); str.clear(); EXPECT_EQ(0U, str.length()); EXPECT_STREQ("", str.data()); str.append("0123456789"); EXPECT_EQ(9U, str.length()); EXPECT_STREQ("012345678", str.data()); } #if SANITIZER_LINUX TEST(SanitizerCommon, GetRandom) { u8 buffer_1[32], buffer_2[32]; for (bool blocking : { false, true }) { EXPECT_FALSE(GetRandom(nullptr, 32, blocking)); EXPECT_FALSE(GetRandom(buffer_1, 0, blocking)); EXPECT_FALSE(GetRandom(buffer_1, 512, blocking)); EXPECT_EQ(ARRAY_SIZE(buffer_1), ARRAY_SIZE(buffer_2)); for (uptr size = 4; size <= ARRAY_SIZE(buffer_1); size += 4) { for (uptr i = 0; i < 100; i++) { EXPECT_TRUE(GetRandom(buffer_1, size, blocking)); EXPECT_TRUE(GetRandom(buffer_2, size, blocking)); EXPECT_NE(internal_memcmp(buffer_1, buffer_2, size), 0); } } } } #endif TEST(SanitizerCommon, ReservedAddressRangeInit) { uptr init_size = 0xffff; ReservedAddressRange address_range; uptr res = address_range.Init(init_size); CHECK_NE(res, (void*)-1); UnmapOrDie((void*)res, init_size); // Should be able to map into the same space now. ReservedAddressRange address_range2; uptr res2 = address_range2.Init(init_size, nullptr, res); CHECK_EQ(res, res2); // TODO(flowerhack): Once this is switched to the "real" implementation // (rather than passing through to MmapNoAccess*), enforce and test "no // double initializations allowed" } TEST(SanitizerCommon, ReservedAddressRangeMap) { constexpr uptr init_size = 0xffff; ReservedAddressRange address_range; uptr res = address_range.Init(init_size); CHECK_NE(res, (void*) -1); // Valid mappings should succeed. CHECK_EQ(res, address_range.Map(res, init_size)); // Valid mappings should be readable. unsigned char buffer[init_size]; memcpy(buffer, reinterpret_cast(res), init_size); // TODO(flowerhack): Once this is switched to the "real" implementation, make // sure you can only mmap into offsets in the Init range. } TEST(SanitizerCommon, ReservedAddressRangeUnmap) { uptr PageSize = GetPageSizeCached(); uptr init_size = PageSize * 8; ReservedAddressRange address_range; uptr base_addr = address_range.Init(init_size); CHECK_NE(base_addr, (void*)-1); CHECK_EQ(base_addr, address_range.Map(base_addr, init_size)); // Unmapping the entire range should succeed. address_range.Unmap(base_addr, init_size); // Map a new range. base_addr = address_range.Init(init_size); CHECK_EQ(base_addr, address_range.Map(base_addr, init_size)); // Windows doesn't allow partial unmappings. #if !SANITIZER_WINDOWS // Unmapping at the beginning should succeed. address_range.Unmap(base_addr, PageSize); // Unmapping at the end should succeed. uptr new_start = reinterpret_cast(address_range.base()) + address_range.size() - PageSize; address_range.Unmap(new_start, PageSize); #endif // Unmapping in the middle of the ReservedAddressRange should fail. EXPECT_DEATH(address_range.Unmap(base_addr + (PageSize * 2), PageSize), ".*"); } } // namespace __sanitizer