//===-- sanitizer_allocator_test.cc ---------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer/AddressSanitizer runtime. // Tests for sanitizer_allocator.h. // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_allocator_internal.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_test_utils.h" #include "sanitizer_pthread_wrappers.h" #include "gtest/gtest.h" #include #include #include #include #include #include using namespace __sanitizer; // Too slow for debug build #if !SANITIZER_DEBUG #if SANITIZER_CAN_USE_ALLOCATOR64 #if SANITIZER_WINDOWS // On Windows 64-bit there is no easy way to find a large enough fixed address // space that is always available. Thus, a dynamically allocated address space // is used instead (i.e. ~(uptr)0). static const uptr kAllocatorSpace = ~(uptr)0; static const uptr kAllocatorSize = 0x8000000000ULL; // 500G static const u64 kAddressSpaceSize = 1ULL << 47; typedef DefaultSizeClassMap SizeClassMap; #elif SANITIZER_ANDROID && defined(__aarch64__) static const uptr kAllocatorSpace = 0x3000000000ULL; static const uptr kAllocatorSize = 0x2000000000ULL; static const u64 kAddressSpaceSize = 1ULL << 39; typedef VeryCompactSizeClassMap SizeClassMap; #else static const uptr kAllocatorSpace = 0x700000000000ULL; static const uptr kAllocatorSize = 0x010000000000ULL; // 1T. static const u64 kAddressSpaceSize = 1ULL << 47; typedef DefaultSizeClassMap SizeClassMap; #endif struct AP64 { // Allocator Params. Short name for shorter demangled names.. static const uptr kSpaceBeg = kAllocatorSpace; static const uptr kSpaceSize = kAllocatorSize; static const uptr kMetadataSize = 16; typedef ::SizeClassMap SizeClassMap; typedef NoOpMapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; }; struct AP64Dyn { static const uptr kSpaceBeg = ~(uptr)0; static const uptr kSpaceSize = kAllocatorSize; static const uptr kMetadataSize = 16; typedef ::SizeClassMap SizeClassMap; typedef NoOpMapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; }; struct AP64Compact { static const uptr kSpaceBeg = ~(uptr)0; static const uptr kSpaceSize = kAllocatorSize; static const uptr kMetadataSize = 16; typedef CompactSizeClassMap SizeClassMap; typedef NoOpMapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; }; struct AP64VeryCompact { static const uptr kSpaceBeg = ~(uptr)0; static const uptr kSpaceSize = 1ULL << 37; static const uptr kMetadataSize = 16; typedef VeryCompactSizeClassMap SizeClassMap; typedef NoOpMapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; }; typedef SizeClassAllocator64 Allocator64; typedef SizeClassAllocator64 Allocator64Dynamic; typedef SizeClassAllocator64 Allocator64Compact; typedef SizeClassAllocator64 Allocator64VeryCompact; #elif defined(__mips64) static const u64 kAddressSpaceSize = 1ULL << 40; #elif defined(__aarch64__) static const u64 kAddressSpaceSize = 1ULL << 39; #elif defined(__s390x__) static const u64 kAddressSpaceSize = 1ULL << 53; #elif defined(__s390__) static const u64 kAddressSpaceSize = 1ULL << 31; #else static const u64 kAddressSpaceSize = 1ULL << 32; #endif static const uptr kRegionSizeLog = FIRST_32_SECOND_64(20, 24); static const uptr kFlatByteMapSize = kAddressSpaceSize >> kRegionSizeLog; struct AP32Compact { static const uptr kSpaceBeg = 0; static const u64 kSpaceSize = kAddressSpaceSize; static const uptr kMetadataSize = 16; typedef CompactSizeClassMap SizeClassMap; static const uptr kRegionSizeLog = ::kRegionSizeLog; typedef FlatByteMap ByteMap; typedef NoOpMapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; }; typedef SizeClassAllocator32 Allocator32Compact; template void TestSizeClassMap() { typedef SizeClassMap SCMap; SCMap::Print(); SCMap::Validate(); } TEST(SanitizerCommon, DefaultSizeClassMap) { TestSizeClassMap(); } TEST(SanitizerCommon, CompactSizeClassMap) { TestSizeClassMap(); } TEST(SanitizerCommon, VeryCompactSizeClassMap) { TestSizeClassMap(); } TEST(SanitizerCommon, InternalSizeClassMap) { TestSizeClassMap(); } template void TestSizeClassAllocator() { Allocator *a = new Allocator; a->Init(kReleaseToOSIntervalNever); SizeClassAllocatorLocalCache cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); static const uptr sizes[] = { 1, 16, 30, 40, 100, 1000, 10000, 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000 }; std::vector allocated; uptr last_total_allocated = 0; for (int i = 0; i < 3; i++) { // Allocate a bunch of chunks. for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { uptr size = sizes[s]; if (!a->CanAllocate(size, 1)) continue; // printf("s = %ld\n", size); uptr n_iter = std::max((uptr)6, 4000000 / size); // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); for (uptr i = 0; i < n_iter; i++) { uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); char *x = (char*)cache.Allocate(a, class_id0); x[0] = 0; x[size - 1] = 0; x[size / 2] = 0; allocated.push_back(x); CHECK_EQ(x, a->GetBlockBegin(x)); CHECK_EQ(x, a->GetBlockBegin(x + size - 1)); CHECK(a->PointerIsMine(x)); CHECK(a->PointerIsMine(x + size - 1)); CHECK(a->PointerIsMine(x + size / 2)); CHECK_GE(a->GetActuallyAllocatedSize(x), size); uptr class_id = a->GetSizeClass(x); CHECK_EQ(class_id, Allocator::SizeClassMapT::ClassID(size)); uptr *metadata = reinterpret_cast(a->GetMetaData(x)); metadata[0] = reinterpret_cast(x) + 1; metadata[1] = 0xABCD; } } // Deallocate all. for (uptr i = 0; i < allocated.size(); i++) { void *x = allocated[i]; uptr *metadata = reinterpret_cast(a->GetMetaData(x)); CHECK_EQ(metadata[0], reinterpret_cast(x) + 1); CHECK_EQ(metadata[1], 0xABCD); cache.Deallocate(a, a->GetSizeClass(x), x); } allocated.clear(); uptr total_allocated = a->TotalMemoryUsed(); if (last_total_allocated == 0) last_total_allocated = total_allocated; CHECK_EQ(last_total_allocated, total_allocated); } // Check that GetBlockBegin never crashes. for (uptr x = 0, step = kAddressSpaceSize / 100000; x < kAddressSpaceSize - step; x += step) if (a->PointerIsMine(reinterpret_cast(x))) Ident(a->GetBlockBegin(reinterpret_cast(x))); a->TestOnlyUnmap(); delete a; } #if SANITIZER_CAN_USE_ALLOCATOR64 // These tests can fail on Windows if memory is somewhat full and lit happens // to run them all at the same time. FIXME: Make them not flaky and reenable. #if !SANITIZER_WINDOWS TEST(SanitizerCommon, SizeClassAllocator64) { TestSizeClassAllocator(); } TEST(SanitizerCommon, SizeClassAllocator64Dynamic) { TestSizeClassAllocator(); } #if !SANITIZER_ANDROID TEST(SanitizerCommon, SizeClassAllocator64Compact) { TestSizeClassAllocator(); } #endif TEST(SanitizerCommon, SizeClassAllocator64VeryCompact) { TestSizeClassAllocator(); } #endif #endif TEST(SanitizerCommon, SizeClassAllocator32Compact) { TestSizeClassAllocator(); } struct AP32SeparateBatches { static const uptr kSpaceBeg = 0; static const u64 kSpaceSize = kAddressSpaceSize; static const uptr kMetadataSize = 16; typedef DefaultSizeClassMap SizeClassMap; static const uptr kRegionSizeLog = ::kRegionSizeLog; typedef FlatByteMap ByteMap; typedef NoOpMapUnmapCallback MapUnmapCallback; static const uptr kFlags = SizeClassAllocator32FlagMasks::kUseSeparateSizeClassForBatch; }; typedef SizeClassAllocator32 Allocator32SeparateBatches; TEST(SanitizerCommon, SizeClassAllocator32SeparateBatches) { TestSizeClassAllocator(); } template void SizeClassAllocatorMetadataStress() { Allocator *a = new Allocator; a->Init(kReleaseToOSIntervalNever); SizeClassAllocatorLocalCache cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); const uptr kNumAllocs = 1 << 13; void *allocated[kNumAllocs]; void *meta[kNumAllocs]; for (uptr i = 0; i < kNumAllocs; i++) { void *x = cache.Allocate(a, 1 + i % (Allocator::kNumClasses - 1)); allocated[i] = x; meta[i] = a->GetMetaData(x); } // Get Metadata kNumAllocs^2 times. for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { uptr idx = i % kNumAllocs; void *m = a->GetMetaData(allocated[idx]); EXPECT_EQ(m, meta[idx]); } for (uptr i = 0; i < kNumAllocs; i++) { cache.Deallocate(a, 1 + i % (Allocator::kNumClasses - 1), allocated[i]); } a->TestOnlyUnmap(); delete a; } #if SANITIZER_CAN_USE_ALLOCATOR64 // These tests can fail on Windows if memory is somewhat full and lit happens // to run them all at the same time. FIXME: Make them not flaky and reenable. #if !SANITIZER_WINDOWS TEST(SanitizerCommon, SizeClassAllocator64MetadataStress) { SizeClassAllocatorMetadataStress(); } TEST(SanitizerCommon, SizeClassAllocator64DynamicMetadataStress) { SizeClassAllocatorMetadataStress(); } #if !SANITIZER_ANDROID TEST(SanitizerCommon, SizeClassAllocator64CompactMetadataStress) { SizeClassAllocatorMetadataStress(); } #endif #endif #endif // SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, SizeClassAllocator32CompactMetadataStress) { SizeClassAllocatorMetadataStress(); } template void SizeClassAllocatorGetBlockBeginStress(u64 TotalSize) { Allocator *a = new Allocator; a->Init(kReleaseToOSIntervalNever); SizeClassAllocatorLocalCache cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); uptr max_size_class = Allocator::SizeClassMapT::kLargestClassID; uptr size = Allocator::SizeClassMapT::Size(max_size_class); // Make sure we correctly compute GetBlockBegin() w/o overflow. for (size_t i = 0; i <= TotalSize / size; i++) { void *x = cache.Allocate(a, max_size_class); void *beg = a->GetBlockBegin(x); // if ((i & (i - 1)) == 0) // fprintf(stderr, "[%zd] %p %p\n", i, x, beg); EXPECT_EQ(x, beg); } a->TestOnlyUnmap(); delete a; } #if SANITIZER_CAN_USE_ALLOCATOR64 // These tests can fail on Windows if memory is somewhat full and lit happens // to run them all at the same time. FIXME: Make them not flaky and reenable. #if !SANITIZER_WINDOWS TEST(SanitizerCommon, SizeClassAllocator64GetBlockBegin) { SizeClassAllocatorGetBlockBeginStress( 1ULL << (SANITIZER_ANDROID ? 31 : 33)); } TEST(SanitizerCommon, SizeClassAllocator64DynamicGetBlockBegin) { SizeClassAllocatorGetBlockBeginStress( 1ULL << (SANITIZER_ANDROID ? 31 : 33)); } #if !SANITIZER_ANDROID TEST(SanitizerCommon, SizeClassAllocator64CompactGetBlockBegin) { SizeClassAllocatorGetBlockBeginStress(1ULL << 33); } #endif TEST(SanitizerCommon, SizeClassAllocator64VeryCompactGetBlockBegin) { // Does not have > 4Gb for each class. SizeClassAllocatorGetBlockBeginStress(1ULL << 31); } TEST(SanitizerCommon, SizeClassAllocator32CompactGetBlockBegin) { SizeClassAllocatorGetBlockBeginStress(1ULL << 33); } #endif #endif // SANITIZER_CAN_USE_ALLOCATOR64 struct TestMapUnmapCallback { static int map_count, unmap_count; void OnMap(uptr p, uptr size) const { map_count++; } void OnUnmap(uptr p, uptr size) const { unmap_count++; } }; int TestMapUnmapCallback::map_count; int TestMapUnmapCallback::unmap_count; #if SANITIZER_CAN_USE_ALLOCATOR64 // These tests can fail on Windows if memory is somewhat full and lit happens // to run them all at the same time. FIXME: Make them not flaky and reenable. #if !SANITIZER_WINDOWS struct AP64WithCallback { static const uptr kSpaceBeg = kAllocatorSpace; static const uptr kSpaceSize = kAllocatorSize; static const uptr kMetadataSize = 16; typedef ::SizeClassMap SizeClassMap; typedef TestMapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; }; TEST(SanitizerCommon, SizeClassAllocator64MapUnmapCallback) { TestMapUnmapCallback::map_count = 0; TestMapUnmapCallback::unmap_count = 0; typedef SizeClassAllocator64 Allocator64WithCallBack; Allocator64WithCallBack *a = new Allocator64WithCallBack; a->Init(kReleaseToOSIntervalNever); EXPECT_EQ(TestMapUnmapCallback::map_count, 1); // Allocator state. SizeClassAllocatorLocalCache cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); AllocatorStats stats; stats.Init(); const size_t kNumChunks = 128; uint32_t chunks[kNumChunks]; a->GetFromAllocator(&stats, 30, chunks, kNumChunks); // State + alloc + metadata + freearray. EXPECT_EQ(TestMapUnmapCallback::map_count, 4); a->TestOnlyUnmap(); EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); // The whole thing. delete a; } #endif #endif struct AP32WithCallback { static const uptr kSpaceBeg = 0; static const u64 kSpaceSize = kAddressSpaceSize; static const uptr kMetadataSize = 16; typedef CompactSizeClassMap SizeClassMap; static const uptr kRegionSizeLog = ::kRegionSizeLog; typedef FlatByteMap ByteMap; typedef TestMapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; }; TEST(SanitizerCommon, SizeClassAllocator32MapUnmapCallback) { TestMapUnmapCallback::map_count = 0; TestMapUnmapCallback::unmap_count = 0; typedef SizeClassAllocator32 Allocator32WithCallBack; Allocator32WithCallBack *a = new Allocator32WithCallBack; a->Init(kReleaseToOSIntervalNever); EXPECT_EQ(TestMapUnmapCallback::map_count, 0); SizeClassAllocatorLocalCache cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); AllocatorStats stats; stats.Init(); a->AllocateBatch(&stats, &cache, 32); EXPECT_EQ(TestMapUnmapCallback::map_count, 1); a->TestOnlyUnmap(); EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); delete a; // fprintf(stderr, "Map: %d Unmap: %d\n", // TestMapUnmapCallback::map_count, // TestMapUnmapCallback::unmap_count); } TEST(SanitizerCommon, LargeMmapAllocatorMapUnmapCallback) { TestMapUnmapCallback::map_count = 0; TestMapUnmapCallback::unmap_count = 0; LargeMmapAllocator a; a.Init(); AllocatorStats stats; stats.Init(); void *x = a.Allocate(&stats, 1 << 20, 1); EXPECT_EQ(TestMapUnmapCallback::map_count, 1); a.Deallocate(&stats, x); EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); } // Don't test OOM conditions on Win64 because it causes other tests on the same // machine to OOM. #if SANITIZER_CAN_USE_ALLOCATOR64 && !SANITIZER_WINDOWS64 && !SANITIZER_ANDROID TEST(SanitizerCommon, SizeClassAllocator64Overflow) { Allocator64 a; a.Init(kReleaseToOSIntervalNever); SizeClassAllocatorLocalCache cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); AllocatorStats stats; stats.Init(); const size_t kNumChunks = 128; uint32_t chunks[kNumChunks]; bool allocation_failed = false; for (int i = 0; i < 1000000; i++) { if (!a.GetFromAllocator(&stats, 52, chunks, kNumChunks)) { allocation_failed = true; break; } } EXPECT_EQ(allocation_failed, true); a.TestOnlyUnmap(); } #endif TEST(SanitizerCommon, LargeMmapAllocator) { LargeMmapAllocator a; a.Init(); AllocatorStats stats; stats.Init(); static const int kNumAllocs = 1000; char *allocated[kNumAllocs]; static const uptr size = 4000; // Allocate some. for (int i = 0; i < kNumAllocs; i++) { allocated[i] = (char *)a.Allocate(&stats, size, 1); CHECK(a.PointerIsMine(allocated[i])); } // Deallocate all. CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); for (int i = 0; i < kNumAllocs; i++) { char *p = allocated[i]; CHECK(a.PointerIsMine(p)); a.Deallocate(&stats, p); } // Check that non left. CHECK_EQ(a.TotalMemoryUsed(), 0); // Allocate some more, also add metadata. for (int i = 0; i < kNumAllocs; i++) { char *x = (char *)a.Allocate(&stats, size, 1); CHECK_GE(a.GetActuallyAllocatedSize(x), size); uptr *meta = reinterpret_cast(a.GetMetaData(x)); *meta = i; allocated[i] = x; } for (int i = 0; i < kNumAllocs * kNumAllocs; i++) { char *p = allocated[i % kNumAllocs]; CHECK(a.PointerIsMine(p)); CHECK(a.PointerIsMine(p + 2000)); } CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); // Deallocate all in reverse order. for (int i = 0; i < kNumAllocs; i++) { int idx = kNumAllocs - i - 1; char *p = allocated[idx]; uptr *meta = reinterpret_cast(a.GetMetaData(p)); CHECK_EQ(*meta, idx); CHECK(a.PointerIsMine(p)); a.Deallocate(&stats, p); } CHECK_EQ(a.TotalMemoryUsed(), 0); // Test alignments. Test with 512MB alignment on x64 non-Windows machines. // Windows doesn't overcommit, and many machines do not have 51.2GB of swap. uptr max_alignment = (SANITIZER_WORDSIZE == 64 && !SANITIZER_WINDOWS) ? (1 << 28) : (1 << 24); for (uptr alignment = 8; alignment <= max_alignment; alignment *= 2) { const uptr kNumAlignedAllocs = 100; for (uptr i = 0; i < kNumAlignedAllocs; i++) { uptr size = ((i % 10) + 1) * 4096; char *p = allocated[i] = (char *)a.Allocate(&stats, size, alignment); CHECK_EQ(p, a.GetBlockBegin(p)); CHECK_EQ(p, a.GetBlockBegin(p + size - 1)); CHECK_EQ(p, a.GetBlockBegin(p + size / 2)); CHECK_EQ(0, (uptr)allocated[i] % alignment); p[0] = p[size - 1] = 0; } for (uptr i = 0; i < kNumAlignedAllocs; i++) { a.Deallocate(&stats, allocated[i]); } } // Regression test for boundary condition in GetBlockBegin(). uptr page_size = GetPageSizeCached(); char *p = (char *)a.Allocate(&stats, page_size, 1); CHECK_EQ(p, a.GetBlockBegin(p)); CHECK_EQ(p, (char *)a.GetBlockBegin(p + page_size - 1)); CHECK_NE(p, (char *)a.GetBlockBegin(p + page_size)); a.Deallocate(&stats, p); } template void TestCombinedAllocator() { typedef CombinedAllocator Allocator; SetAllocatorMayReturnNull(true); Allocator *a = new Allocator; a->Init(kReleaseToOSIntervalNever); std::mt19937 r; AllocatorCache cache; memset(&cache, 0, sizeof(cache)); a->InitCache(&cache); EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0); EXPECT_EQ(a->Allocate(&cache, -1, 1024), (void*)0); EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1), (void*)0); EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1024), (void*)0); EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1023, 1024), (void*)0); // Set to false SetAllocatorMayReturnNull(false); EXPECT_DEATH(a->Allocate(&cache, -1, 1), "allocator is terminating the process"); const uptr kNumAllocs = 100000; const uptr kNumIter = 10; for (uptr iter = 0; iter < kNumIter; iter++) { std::vector allocated; for (uptr i = 0; i < kNumAllocs; i++) { uptr size = (i % (1 << 14)) + 1; if ((i % 1024) == 0) size = 1 << (10 + (i % 14)); void *x = a->Allocate(&cache, size, 1); uptr *meta = reinterpret_cast(a->GetMetaData(x)); CHECK_EQ(*meta, 0); *meta = size; allocated.push_back(x); } std::shuffle(allocated.begin(), allocated.end(), r); for (uptr i = 0; i < kNumAllocs; i++) { void *x = allocated[i]; uptr *meta = reinterpret_cast(a->GetMetaData(x)); CHECK_NE(*meta, 0); CHECK(a->PointerIsMine(x)); *meta = 0; a->Deallocate(&cache, x); } allocated.clear(); a->SwallowCache(&cache); } a->DestroyCache(&cache); a->TestOnlyUnmap(); } #if SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, CombinedAllocator64) { TestCombinedAllocator, SizeClassAllocatorLocalCache > (); } TEST(SanitizerCommon, CombinedAllocator64Dynamic) { TestCombinedAllocator, SizeClassAllocatorLocalCache > (); } #if !SANITIZER_ANDROID TEST(SanitizerCommon, CombinedAllocator64Compact) { TestCombinedAllocator, SizeClassAllocatorLocalCache > (); } #endif TEST(SanitizerCommon, CombinedAllocator64VeryCompact) { TestCombinedAllocator, SizeClassAllocatorLocalCache > (); } #endif TEST(SanitizerCommon, CombinedAllocator32Compact) { TestCombinedAllocator, SizeClassAllocatorLocalCache > (); } template void TestSizeClassAllocatorLocalCache() { AllocatorCache cache; typedef typename AllocatorCache::Allocator Allocator; Allocator *a = new Allocator(); a->Init(kReleaseToOSIntervalNever); memset(&cache, 0, sizeof(cache)); cache.Init(0); const uptr kNumAllocs = 10000; const int kNumIter = 100; uptr saved_total = 0; for (int class_id = 1; class_id <= 5; class_id++) { for (int it = 0; it < kNumIter; it++) { void *allocated[kNumAllocs]; for (uptr i = 0; i < kNumAllocs; i++) { allocated[i] = cache.Allocate(a, class_id); } for (uptr i = 0; i < kNumAllocs; i++) { cache.Deallocate(a, class_id, allocated[i]); } cache.Drain(a); uptr total_allocated = a->TotalMemoryUsed(); if (it) CHECK_EQ(saved_total, total_allocated); saved_total = total_allocated; } } a->TestOnlyUnmap(); delete a; } #if SANITIZER_CAN_USE_ALLOCATOR64 // These tests can fail on Windows if memory is somewhat full and lit happens // to run them all at the same time. FIXME: Make them not flaky and reenable. #if !SANITIZER_WINDOWS TEST(SanitizerCommon, SizeClassAllocator64LocalCache) { TestSizeClassAllocatorLocalCache< SizeClassAllocatorLocalCache >(); } TEST(SanitizerCommon, SizeClassAllocator64DynamicLocalCache) { TestSizeClassAllocatorLocalCache< SizeClassAllocatorLocalCache >(); } #if !SANITIZER_ANDROID TEST(SanitizerCommon, SizeClassAllocator64CompactLocalCache) { TestSizeClassAllocatorLocalCache< SizeClassAllocatorLocalCache >(); } #endif TEST(SanitizerCommon, SizeClassAllocator64VeryCompactLocalCache) { TestSizeClassAllocatorLocalCache< SizeClassAllocatorLocalCache >(); } #endif #endif TEST(SanitizerCommon, SizeClassAllocator32CompactLocalCache) { TestSizeClassAllocatorLocalCache< SizeClassAllocatorLocalCache >(); } #if SANITIZER_CAN_USE_ALLOCATOR64 typedef SizeClassAllocatorLocalCache AllocatorCache; static AllocatorCache static_allocator_cache; void *AllocatorLeakTestWorker(void *arg) { typedef AllocatorCache::Allocator Allocator; Allocator *a = (Allocator*)(arg); static_allocator_cache.Allocate(a, 10); static_allocator_cache.Drain(a); return 0; } TEST(SanitizerCommon, AllocatorLeakTest) { typedef AllocatorCache::Allocator Allocator; Allocator a; a.Init(kReleaseToOSIntervalNever); uptr total_used_memory = 0; for (int i = 0; i < 100; i++) { pthread_t t; PTHREAD_CREATE(&t, 0, AllocatorLeakTestWorker, &a); PTHREAD_JOIN(t, 0); if (i == 0) total_used_memory = a.TotalMemoryUsed(); EXPECT_EQ(a.TotalMemoryUsed(), total_used_memory); } a.TestOnlyUnmap(); } // Struct which is allocated to pass info to new threads. The new thread frees // it. struct NewThreadParams { AllocatorCache *thread_cache; AllocatorCache::Allocator *allocator; uptr class_id; }; // Called in a new thread. Just frees its argument. static void *DeallocNewThreadWorker(void *arg) { NewThreadParams *params = reinterpret_cast(arg); params->thread_cache->Deallocate(params->allocator, params->class_id, params); return NULL; } // The allocator cache is supposed to be POD and zero initialized. We should be // able to call Deallocate on a zeroed cache, and it will self-initialize. TEST(Allocator, AllocatorCacheDeallocNewThread) { AllocatorCache::Allocator allocator; allocator.Init(kReleaseToOSIntervalNever); AllocatorCache main_cache; AllocatorCache child_cache; memset(&main_cache, 0, sizeof(main_cache)); memset(&child_cache, 0, sizeof(child_cache)); uptr class_id = DefaultSizeClassMap::ClassID(sizeof(NewThreadParams)); NewThreadParams *params = reinterpret_cast( main_cache.Allocate(&allocator, class_id)); params->thread_cache = &child_cache; params->allocator = &allocator; params->class_id = class_id; pthread_t t; PTHREAD_CREATE(&t, 0, DeallocNewThreadWorker, params); PTHREAD_JOIN(t, 0); allocator.TestOnlyUnmap(); } #endif TEST(Allocator, Basic) { char *p = (char*)InternalAlloc(10); EXPECT_NE(p, (char*)0); char *p2 = (char*)InternalAlloc(20); EXPECT_NE(p2, (char*)0); EXPECT_NE(p2, p); InternalFree(p); InternalFree(p2); } TEST(Allocator, Stress) { const int kCount = 1000; char *ptrs[kCount]; unsigned rnd = 42; for (int i = 0; i < kCount; i++) { uptr sz = my_rand_r(&rnd) % 1000; char *p = (char*)InternalAlloc(sz); EXPECT_NE(p, (char*)0); ptrs[i] = p; } for (int i = 0; i < kCount; i++) { InternalFree(ptrs[i]); } } TEST(Allocator, LargeAlloc) { void *p = InternalAlloc(10 << 20); InternalFree(p); } TEST(Allocator, ScopedBuffer) { const int kSize = 512; { InternalScopedBuffer int_buf(kSize); EXPECT_EQ(sizeof(int) * kSize, int_buf.size()); // NOLINT } InternalScopedBuffer char_buf(kSize); EXPECT_EQ(sizeof(char) * kSize, char_buf.size()); // NOLINT internal_memset(char_buf.data(), 'c', kSize); for (int i = 0; i < kSize; i++) { EXPECT_EQ('c', char_buf[i]); } } void IterationTestCallback(uptr chunk, void *arg) { reinterpret_cast *>(arg)->insert(chunk); } template void TestSizeClassAllocatorIteration() { Allocator *a = new Allocator; a->Init(kReleaseToOSIntervalNever); SizeClassAllocatorLocalCache cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000, 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000}; std::vector allocated; // Allocate a bunch of chunks. for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { uptr size = sizes[s]; if (!a->CanAllocate(size, 1)) continue; // printf("s = %ld\n", size); uptr n_iter = std::max((uptr)6, 80000 / size); // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); for (uptr j = 0; j < n_iter; j++) { uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); void *x = cache.Allocate(a, class_id0); allocated.push_back(x); } } std::set reported_chunks; a->ForceLock(); a->ForEachChunk(IterationTestCallback, &reported_chunks); a->ForceUnlock(); for (uptr i = 0; i < allocated.size(); i++) { // Don't use EXPECT_NE. Reporting the first mismatch is enough. ASSERT_NE(reported_chunks.find(reinterpret_cast(allocated[i])), reported_chunks.end()); } a->TestOnlyUnmap(); delete a; } #if SANITIZER_CAN_USE_ALLOCATOR64 // These tests can fail on Windows if memory is somewhat full and lit happens // to run them all at the same time. FIXME: Make them not flaky and reenable. #if !SANITIZER_WINDOWS TEST(SanitizerCommon, SizeClassAllocator64Iteration) { TestSizeClassAllocatorIteration(); } TEST(SanitizerCommon, SizeClassAllocator64DynamicIteration) { TestSizeClassAllocatorIteration(); } #endif #endif TEST(SanitizerCommon, SizeClassAllocator32Iteration) { TestSizeClassAllocatorIteration(); } TEST(SanitizerCommon, LargeMmapAllocatorIteration) { LargeMmapAllocator a; a.Init(); AllocatorStats stats; stats.Init(); static const uptr kNumAllocs = 1000; char *allocated[kNumAllocs]; static const uptr size = 40; // Allocate some. for (uptr i = 0; i < kNumAllocs; i++) allocated[i] = (char *)a.Allocate(&stats, size, 1); std::set reported_chunks; a.ForceLock(); a.ForEachChunk(IterationTestCallback, &reported_chunks); a.ForceUnlock(); for (uptr i = 0; i < kNumAllocs; i++) { // Don't use EXPECT_NE. Reporting the first mismatch is enough. ASSERT_NE(reported_chunks.find(reinterpret_cast(allocated[i])), reported_chunks.end()); } for (uptr i = 0; i < kNumAllocs; i++) a.Deallocate(&stats, allocated[i]); } TEST(SanitizerCommon, LargeMmapAllocatorBlockBegin) { LargeMmapAllocator a; a.Init(); AllocatorStats stats; stats.Init(); static const uptr kNumAllocs = 1024; static const uptr kNumExpectedFalseLookups = 10000000; char *allocated[kNumAllocs]; static const uptr size = 4096; // Allocate some. for (uptr i = 0; i < kNumAllocs; i++) { allocated[i] = (char *)a.Allocate(&stats, size, 1); } a.ForceLock(); for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { // if ((i & (i - 1)) == 0) fprintf(stderr, "[%zd]\n", i); char *p1 = allocated[i % kNumAllocs]; EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1)); EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size / 2)); EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size - 1)); EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 - 100)); } for (uptr i = 0; i < kNumExpectedFalseLookups; i++) { void *p = reinterpret_cast(i % 1024); EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p)); p = reinterpret_cast(~0L - (i % 1024)); EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p)); } a.ForceUnlock(); for (uptr i = 0; i < kNumAllocs; i++) a.Deallocate(&stats, allocated[i]); } // Don't test OOM conditions on Win64 because it causes other tests on the same // machine to OOM. #if SANITIZER_CAN_USE_ALLOCATOR64 && !SANITIZER_WINDOWS64 && !SANITIZER_ANDROID typedef SizeClassMap<3, 4, 8, 63, 128, 16> SpecialSizeClassMap; struct AP64_SpecialSizeClassMap { static const uptr kSpaceBeg = kAllocatorSpace; static const uptr kSpaceSize = kAllocatorSize; static const uptr kMetadataSize = 0; typedef SpecialSizeClassMap SizeClassMap; typedef NoOpMapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; }; // Regression test for out-of-memory condition in PopulateFreeList(). TEST(SanitizerCommon, SizeClassAllocator64PopulateFreeListOOM) { // In a world where regions are small and chunks are huge... typedef SizeClassAllocator64 SpecialAllocator64; const uptr kRegionSize = kAllocatorSize / SpecialSizeClassMap::kNumClassesRounded; SpecialAllocator64 *a = new SpecialAllocator64; a->Init(kReleaseToOSIntervalNever); SizeClassAllocatorLocalCache cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); // ...one man is on a mission to overflow a region with a series of // successive allocations. const uptr kClassID = 107; const uptr kAllocationSize = SpecialSizeClassMap::Size(kClassID); ASSERT_LT(2 * kAllocationSize, kRegionSize); ASSERT_GT(3 * kAllocationSize, kRegionSize); EXPECT_NE(cache.Allocate(a, kClassID), nullptr); EXPECT_NE(cache.Allocate(a, kClassID), nullptr); EXPECT_EQ(cache.Allocate(a, kClassID), nullptr); const uptr Class2 = 100; const uptr Size2 = SpecialSizeClassMap::Size(Class2); ASSERT_EQ(Size2 * 8, kRegionSize); char *p[7]; for (int i = 0; i < 7; i++) { p[i] = (char*)cache.Allocate(a, Class2); EXPECT_NE(p[i], nullptr); fprintf(stderr, "p[%d] %p s = %lx\n", i, (void*)p[i], Size2); p[i][Size2 - 1] = 42; if (i) ASSERT_LT(p[i - 1], p[i]); } EXPECT_EQ(cache.Allocate(a, Class2), nullptr); cache.Deallocate(a, Class2, p[0]); cache.Drain(a); ASSERT_EQ(p[6][Size2 - 1], 42); a->TestOnlyUnmap(); delete a; } #endif #if SANITIZER_CAN_USE_ALLOCATOR64 class NoMemoryMapper { public: uptr last_request_buffer_size; NoMemoryMapper() : last_request_buffer_size(0) {} uptr MapPackedCounterArrayBuffer(uptr buffer_size) { last_request_buffer_size = buffer_size; return 0; } void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {} }; class RedZoneMemoryMapper { public: RedZoneMemoryMapper() { const auto page_size = GetPageSize(); buffer = MmapOrDie(3ULL * page_size, ""); MprotectNoAccess(reinterpret_cast(buffer), page_size); MprotectNoAccess(reinterpret_cast(buffer) + page_size * 2, page_size); } ~RedZoneMemoryMapper() { UnmapOrDie(buffer, 3 * GetPageSize()); } uptr MapPackedCounterArrayBuffer(uptr buffer_size) { const auto page_size = GetPageSize(); CHECK_EQ(buffer_size, page_size); memset(reinterpret_cast(reinterpret_cast(buffer) + page_size), 0, page_size); return reinterpret_cast(buffer) + page_size; } void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {} private: void *buffer; }; TEST(SanitizerCommon, SizeClassAllocator64PackedCounterArray) { NoMemoryMapper no_memory_mapper; typedef Allocator64::PackedCounterArray NoMemoryPackedCounterArray; for (int i = 0; i < 64; i++) { // Various valid counter's max values packed into one word. NoMemoryPackedCounterArray counters_2n(1, 1ULL << i, &no_memory_mapper); EXPECT_EQ(8ULL, no_memory_mapper.last_request_buffer_size); // Check the "all bit set" values too. NoMemoryPackedCounterArray counters_2n1_1(1, ~0ULL >> i, &no_memory_mapper); EXPECT_EQ(8ULL, no_memory_mapper.last_request_buffer_size); // Verify the packing ratio, the counter is expected to be packed into the // closest power of 2 bits. NoMemoryPackedCounterArray counters(64, 1ULL << i, &no_memory_mapper); EXPECT_EQ(8ULL * RoundUpToPowerOfTwo(i + 1), no_memory_mapper.last_request_buffer_size); } RedZoneMemoryMapper memory_mapper; typedef Allocator64::PackedCounterArray RedZonePackedCounterArray; // Go through 1, 2, 4, 8, .. 64 bits per counter. for (int i = 0; i < 7; i++) { // Make sure counters request one memory page for the buffer. const u64 kNumCounters = (GetPageSize() / 8) * (64 >> i); RedZonePackedCounterArray counters(kNumCounters, 1ULL << ((1 << i) - 1), &memory_mapper); counters.Inc(0); for (u64 c = 1; c < kNumCounters - 1; c++) { ASSERT_EQ(0ULL, counters.Get(c)); counters.Inc(c); ASSERT_EQ(1ULL, counters.Get(c - 1)); } ASSERT_EQ(0ULL, counters.Get(kNumCounters - 1)); counters.Inc(kNumCounters - 1); if (i > 0) { counters.IncRange(0, kNumCounters - 1); for (u64 c = 0; c < kNumCounters; c++) ASSERT_EQ(2ULL, counters.Get(c)); } } } class RangeRecorder { public: std::string reported_pages; RangeRecorder() : page_size_scaled_log( Log2(GetPageSizeCached() >> Allocator64::kCompactPtrScale)), last_page_reported(0) {} void ReleasePageRangeToOS(u32 from, u32 to) { from >>= page_size_scaled_log; to >>= page_size_scaled_log; ASSERT_LT(from, to); if (!reported_pages.empty()) ASSERT_LT(last_page_reported, from); reported_pages.append(from - last_page_reported, '.'); reported_pages.append(to - from, 'x'); last_page_reported = to; } private: const uptr page_size_scaled_log; u32 last_page_reported; }; TEST(SanitizerCommon, SizeClassAllocator64FreePagesRangeTracker) { typedef Allocator64::FreePagesRangeTracker RangeTracker; // 'x' denotes a page to be released, '.' denotes a page to be kept around. const char* test_cases[] = { "", ".", "x", "........", "xxxxxxxxxxx", "..............xxxxx", "xxxxxxxxxxxxxxxxxx.....", "......xxxxxxxx........", "xxx..........xxxxxxxxxxxxxxx", "......xxxx....xxxx........", "xxx..........xxxxxxxx....xxxxxxx", "x.x.x.x.x.x.x.x.x.x.x.x.", ".x.x.x.x.x.x.x.x.x.x.x.x", ".x.x.x.x.x.x.x.x.x.x.x.x.", "x.x.x.x.x.x.x.x.x.x.x.x.x", }; for (auto test_case : test_cases) { RangeRecorder range_recorder; RangeTracker tracker(&range_recorder); for (int i = 0; test_case[i] != 0; i++) tracker.NextPage(test_case[i] == 'x'); tracker.Done(); // Strip trailing '.'-pages before comparing the results as they are not // going to be reported to range_recorder anyway. const char* last_x = strrchr(test_case, 'x'); std::string expected( test_case, last_x == nullptr ? 0 : (last_x - test_case + 1)); EXPECT_STREQ(expected.c_str(), range_recorder.reported_pages.c_str()); } } class ReleasedPagesTrackingMemoryMapper { public: std::set reported_pages; uptr MapPackedCounterArrayBuffer(uptr buffer_size) { reported_pages.clear(); return reinterpret_cast(calloc(1, buffer_size)); } void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) { free(reinterpret_cast(buffer)); } void ReleasePageRangeToOS(u32 from, u32 to) { uptr page_size_scaled = GetPageSizeCached() >> Allocator64::kCompactPtrScale; for (u32 i = from; i < to; i += page_size_scaled) reported_pages.insert(i); } }; template void TestReleaseFreeMemoryToOS() { ReleasedPagesTrackingMemoryMapper memory_mapper; const uptr kAllocatedPagesCount = 1024; const uptr page_size = GetPageSizeCached(); const uptr page_size_scaled = page_size >> Allocator::kCompactPtrScale; std::mt19937 r; uint32_t rnd_state = 42; for (uptr class_id = 1; class_id <= Allocator::SizeClassMapT::kLargestClassID; class_id++) { const uptr chunk_size = Allocator::SizeClassMapT::Size(class_id); const uptr chunk_size_scaled = chunk_size >> Allocator::kCompactPtrScale; const uptr max_chunks = kAllocatedPagesCount * GetPageSizeCached() / chunk_size; // Generate the random free list. std::vector free_array; bool in_free_range = false; uptr current_range_end = 0; for (uptr i = 0; i < max_chunks; i++) { if (i == current_range_end) { in_free_range = (my_rand_r(&rnd_state) & 1U) == 1; current_range_end += my_rand_r(&rnd_state) % 100 + 1; } if (in_free_range) free_array.push_back(i * chunk_size_scaled); } if (free_array.empty()) continue; // Shuffle free_list to verify that ReleaseFreeMemoryToOS does not depend on // the list ordering. std::shuffle(free_array.begin(), free_array.end(), r); Allocator::ReleaseFreeMemoryToOS(&free_array[0], free_array.size(), chunk_size, kAllocatedPagesCount, &memory_mapper); // Verify that there are no released pages touched by used chunks and all // ranges of free chunks big enough to contain the entire memory pages had // these pages released. uptr verified_released_pages = 0; std::set free_chunks(free_array.begin(), free_array.end()); u32 current_chunk = 0; in_free_range = false; u32 current_free_range_start = 0; for (uptr i = 0; i <= max_chunks; i++) { bool is_free_chunk = free_chunks.find(current_chunk) != free_chunks.end(); if (is_free_chunk) { if (!in_free_range) { in_free_range = true; current_free_range_start = current_chunk; } } else { // Verify that this used chunk does not touch any released page. for (uptr i_page = current_chunk / page_size_scaled; i_page <= (current_chunk + chunk_size_scaled - 1) / page_size_scaled; i_page++) { bool page_released = memory_mapper.reported_pages.find(i_page * page_size_scaled) != memory_mapper.reported_pages.end(); ASSERT_EQ(false, page_released); } if (in_free_range) { in_free_range = false; // Verify that all entire memory pages covered by this range of free // chunks were released. u32 page = RoundUpTo(current_free_range_start, page_size_scaled); while (page + page_size_scaled <= current_chunk) { bool page_released = memory_mapper.reported_pages.find(page) != memory_mapper.reported_pages.end(); ASSERT_EQ(true, page_released); verified_released_pages++; page += page_size_scaled; } } } current_chunk += chunk_size_scaled; } ASSERT_EQ(memory_mapper.reported_pages.size(), verified_released_pages); } } TEST(SanitizerCommon, SizeClassAllocator64ReleaseFreeMemoryToOS) { TestReleaseFreeMemoryToOS(); } #if !SANITIZER_ANDROID TEST(SanitizerCommon, SizeClassAllocator64CompactReleaseFreeMemoryToOS) { TestReleaseFreeMemoryToOS(); } TEST(SanitizerCommon, SizeClassAllocator64VeryCompactReleaseFreeMemoryToOS) { TestReleaseFreeMemoryToOS(); } #endif // !SANITIZER_ANDROID #endif // SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, TwoLevelByteMap) { const u64 kSize1 = 1 << 6, kSize2 = 1 << 12; const u64 n = kSize1 * kSize2; TwoLevelByteMap m; m.TestOnlyInit(); for (u64 i = 0; i < n; i += 7) { m.set(i, (i % 100) + 1); } for (u64 j = 0; j < n; j++) { if (j % 7) EXPECT_EQ(m[j], 0); else EXPECT_EQ(m[j], (j % 100) + 1); } m.TestOnlyUnmap(); } typedef TwoLevelByteMap<1 << 12, 1 << 13, TestMapUnmapCallback> TestByteMap; struct TestByteMapParam { TestByteMap *m; size_t shard; size_t num_shards; }; void *TwoLevelByteMapUserThread(void *param) { TestByteMapParam *p = (TestByteMapParam*)param; for (size_t i = p->shard; i < p->m->size(); i += p->num_shards) { size_t val = (i % 100) + 1; p->m->set(i, val); EXPECT_EQ((*p->m)[i], val); } return 0; } TEST(SanitizerCommon, ThreadedTwoLevelByteMap) { TestByteMap m; m.TestOnlyInit(); TestMapUnmapCallback::map_count = 0; TestMapUnmapCallback::unmap_count = 0; static const int kNumThreads = 4; pthread_t t[kNumThreads]; TestByteMapParam p[kNumThreads]; for (int i = 0; i < kNumThreads; i++) { p[i].m = &m; p[i].shard = i; p[i].num_shards = kNumThreads; PTHREAD_CREATE(&t[i], 0, TwoLevelByteMapUserThread, &p[i]); } for (int i = 0; i < kNumThreads; i++) { PTHREAD_JOIN(t[i], 0); } EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1()); EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, 0UL); m.TestOnlyUnmap(); EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1()); EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, m.size1()); } #endif // #if !SANITIZER_DEBUG