//===-- sanitizer_linux_libcdep.cc ----------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries and implements linux-specific functions from // sanitizer_libc.h. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD #include "sanitizer_allocator_internal.h" #include "sanitizer_atomic.h" #include "sanitizer_common.h" #include "sanitizer_file.h" #include "sanitizer_flags.h" #include "sanitizer_freebsd.h" #include "sanitizer_linux.h" #include "sanitizer_placement_new.h" #include "sanitizer_procmaps.h" #include "sanitizer_stacktrace.h" #include // for dlsym() #include #include #include #include #include #if SANITIZER_FREEBSD #include #include #include #define pthread_getattr_np pthread_attr_get_np #endif #if SANITIZER_NETBSD #include #include #endif #if SANITIZER_LINUX #include #endif #if SANITIZER_ANDROID #include #if !defined(CPU_COUNT) && !defined(__aarch64__) #include #include struct __sanitizer::linux_dirent { long d_ino; off_t d_off; unsigned short d_reclen; char d_name[]; }; #endif #endif #if !SANITIZER_ANDROID #include #include #endif namespace __sanitizer { SANITIZER_WEAK_ATTRIBUTE int real_sigaction(int signum, const void *act, void *oldact); int internal_sigaction(int signum, const void *act, void *oldact) { #if !SANITIZER_GO if (&real_sigaction) return real_sigaction(signum, act, oldact); #endif return sigaction(signum, (const struct sigaction *)act, (struct sigaction *)oldact); } void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, uptr *stack_bottom) { CHECK(stack_top); CHECK(stack_bottom); if (at_initialization) { // This is the main thread. Libpthread may not be initialized yet. struct rlimit rl; CHECK_EQ(getrlimit(RLIMIT_STACK, &rl), 0); // Find the mapping that contains a stack variable. MemoryMappingLayout proc_maps(/*cache_enabled*/true); MemoryMappedSegment segment; uptr prev_end = 0; while (proc_maps.Next(&segment)) { if ((uptr)&rl < segment.end) break; prev_end = segment.end; } CHECK((uptr)&rl >= segment.start && (uptr)&rl < segment.end); // Get stacksize from rlimit, but clip it so that it does not overlap // with other mappings. uptr stacksize = rl.rlim_cur; if (stacksize > segment.end - prev_end) stacksize = segment.end - prev_end; // When running with unlimited stack size, we still want to set some limit. // The unlimited stack size is caused by 'ulimit -s unlimited'. // Also, for some reason, GNU make spawns subprocesses with unlimited stack. if (stacksize > kMaxThreadStackSize) stacksize = kMaxThreadStackSize; *stack_top = segment.end; *stack_bottom = segment.end - stacksize; return; } pthread_attr_t attr; pthread_attr_init(&attr); CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); uptr stacksize = 0; void *stackaddr = nullptr; my_pthread_attr_getstack(&attr, &stackaddr, &stacksize); pthread_attr_destroy(&attr); *stack_top = (uptr)stackaddr + stacksize; *stack_bottom = (uptr)stackaddr; } #if !SANITIZER_GO bool SetEnv(const char *name, const char *value) { void *f = dlsym(RTLD_NEXT, "setenv"); if (!f) return false; typedef int(*setenv_ft)(const char *name, const char *value, int overwrite); setenv_ft setenv_f; CHECK_EQ(sizeof(setenv_f), sizeof(f)); internal_memcpy(&setenv_f, &f, sizeof(f)); return setenv_f(name, value, 1) == 0; } #endif bool SanitizerSetThreadName(const char *name) { #ifdef PR_SET_NAME return 0 == prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0); // NOLINT #else return false; #endif } bool SanitizerGetThreadName(char *name, int max_len) { #ifdef PR_GET_NAME char buff[17]; if (prctl(PR_GET_NAME, (unsigned long)buff, 0, 0, 0)) // NOLINT return false; internal_strncpy(name, buff, max_len); name[max_len] = 0; return true; #else return false; #endif } #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_GO && \ !SANITIZER_NETBSD static uptr g_tls_size; #ifdef __i386__ # define DL_INTERNAL_FUNCTION __attribute__((regparm(3), stdcall)) #else # define DL_INTERNAL_FUNCTION #endif void InitTlsSize() { // all current supported platforms have 16 bytes stack alignment const size_t kStackAlign = 16; typedef void (*get_tls_func)(size_t*, size_t*) DL_INTERNAL_FUNCTION; get_tls_func get_tls; void *get_tls_static_info_ptr = dlsym(RTLD_NEXT, "_dl_get_tls_static_info"); CHECK_EQ(sizeof(get_tls), sizeof(get_tls_static_info_ptr)); internal_memcpy(&get_tls, &get_tls_static_info_ptr, sizeof(get_tls_static_info_ptr)); CHECK_NE(get_tls, 0); size_t tls_size = 0; size_t tls_align = 0; get_tls(&tls_size, &tls_align); if (tls_align < kStackAlign) tls_align = kStackAlign; g_tls_size = RoundUpTo(tls_size, tls_align); } #else void InitTlsSize() { } #endif // !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_GO && // !SANITIZER_NETBSD #if (defined(__x86_64__) || defined(__i386__) || defined(__mips__) \ || defined(__aarch64__) || defined(__powerpc64__) || defined(__s390__) \ || defined(__arm__)) && SANITIZER_LINUX && !SANITIZER_ANDROID // sizeof(struct pthread) from glibc. static atomic_uintptr_t kThreadDescriptorSize; uptr ThreadDescriptorSize() { uptr val = atomic_load(&kThreadDescriptorSize, memory_order_relaxed); if (val) return val; #if defined(__x86_64__) || defined(__i386__) || defined(__arm__) #ifdef _CS_GNU_LIBC_VERSION char buf[64]; uptr len = confstr(_CS_GNU_LIBC_VERSION, buf, sizeof(buf)); if (len < sizeof(buf) && internal_strncmp(buf, "glibc 2.", 8) == 0) { char *end; int minor = internal_simple_strtoll(buf + 8, &end, 10); if (end != buf + 8 && (*end == '\0' || *end == '.' || *end == '-')) { int patch = 0; if (*end == '.') // strtoll will return 0 if no valid conversion could be performed patch = internal_simple_strtoll(end + 1, nullptr, 10); /* sizeof(struct pthread) values from various glibc versions. */ if (SANITIZER_X32) val = 1728; // Assume only one particular version for x32. // For ARM sizeof(struct pthread) changed in Glibc 2.23. else if (SANITIZER_ARM) val = minor <= 22 ? 1120 : 1216; else if (minor <= 3) val = FIRST_32_SECOND_64(1104, 1696); else if (minor == 4) val = FIRST_32_SECOND_64(1120, 1728); else if (minor == 5) val = FIRST_32_SECOND_64(1136, 1728); else if (minor <= 9) val = FIRST_32_SECOND_64(1136, 1712); else if (minor == 10) val = FIRST_32_SECOND_64(1168, 1776); else if (minor == 11 || (minor == 12 && patch == 1)) val = FIRST_32_SECOND_64(1168, 2288); else if (minor <= 13) val = FIRST_32_SECOND_64(1168, 2304); else val = FIRST_32_SECOND_64(1216, 2304); } if (val) atomic_store(&kThreadDescriptorSize, val, memory_order_relaxed); return val; } #endif #elif defined(__mips__) // TODO(sagarthakur): add more values as per different glibc versions. val = FIRST_32_SECOND_64(1152, 1776); if (val) atomic_store(&kThreadDescriptorSize, val, memory_order_relaxed); return val; #elif defined(__aarch64__) // The sizeof (struct pthread) is the same from GLIBC 2.17 to 2.22. val = 1776; atomic_store(&kThreadDescriptorSize, val, memory_order_relaxed); return val; #elif defined(__powerpc64__) val = 1776; // from glibc.ppc64le 2.20-8.fc21 atomic_store(&kThreadDescriptorSize, val, memory_order_relaxed); return val; #elif defined(__s390__) val = FIRST_32_SECOND_64(1152, 1776); // valid for glibc 2.22 atomic_store(&kThreadDescriptorSize, val, memory_order_relaxed); #endif return 0; } // The offset at which pointer to self is located in the thread descriptor. const uptr kThreadSelfOffset = FIRST_32_SECOND_64(8, 16); uptr ThreadSelfOffset() { return kThreadSelfOffset; } #if defined(__mips__) || defined(__powerpc64__) // TlsPreTcbSize includes size of struct pthread_descr and size of tcb // head structure. It lies before the static tls blocks. static uptr TlsPreTcbSize() { # if defined(__mips__) const uptr kTcbHead = 16; // sizeof (tcbhead_t) # elif defined(__powerpc64__) const uptr kTcbHead = 88; // sizeof (tcbhead_t) # endif const uptr kTlsAlign = 16; const uptr kTlsPreTcbSize = RoundUpTo(ThreadDescriptorSize() + kTcbHead, kTlsAlign); return kTlsPreTcbSize; } #endif uptr ThreadSelf() { uptr descr_addr; # if defined(__i386__) asm("mov %%gs:%c1,%0" : "=r"(descr_addr) : "i"(kThreadSelfOffset)); # elif defined(__x86_64__) asm("mov %%fs:%c1,%0" : "=r"(descr_addr) : "i"(kThreadSelfOffset)); # elif defined(__mips__) // MIPS uses TLS variant I. The thread pointer (in hardware register $29) // points to the end of the TCB + 0x7000. The pthread_descr structure is // immediately in front of the TCB. TlsPreTcbSize() includes the size of the // TCB and the size of pthread_descr. const uptr kTlsTcbOffset = 0x7000; uptr thread_pointer; asm volatile(".set push;\ .set mips64r2;\ rdhwr %0,$29;\ .set pop" : "=r" (thread_pointer)); descr_addr = thread_pointer - kTlsTcbOffset - TlsPreTcbSize(); # elif defined(__aarch64__) || defined(__arm__) descr_addr = reinterpret_cast(__builtin_thread_pointer()) - ThreadDescriptorSize(); # elif defined(__s390__) descr_addr = reinterpret_cast(__builtin_thread_pointer()); # elif defined(__powerpc64__) // PPC64LE uses TLS variant I. The thread pointer (in GPR 13) // points to the end of the TCB + 0x7000. The pthread_descr structure is // immediately in front of the TCB. TlsPreTcbSize() includes the size of the // TCB and the size of pthread_descr. const uptr kTlsTcbOffset = 0x7000; uptr thread_pointer; asm("addi %0,13,%1" : "=r"(thread_pointer) : "I"(-kTlsTcbOffset)); descr_addr = thread_pointer - TlsPreTcbSize(); # else # error "unsupported CPU arch" # endif return descr_addr; } #endif // (x86_64 || i386 || MIPS) && SANITIZER_LINUX #if SANITIZER_FREEBSD static void **ThreadSelfSegbase() { void **segbase = 0; # if defined(__i386__) // sysarch(I386_GET_GSBASE, segbase); __asm __volatile("mov %%gs:0, %0" : "=r" (segbase)); # elif defined(__x86_64__) // sysarch(AMD64_GET_FSBASE, segbase); __asm __volatile("movq %%fs:0, %0" : "=r" (segbase)); # else # error "unsupported CPU arch" # endif return segbase; } uptr ThreadSelf() { return (uptr)ThreadSelfSegbase()[2]; } #endif // SANITIZER_FREEBSD #if SANITIZER_NETBSD static struct tls_tcb * ThreadSelfTlsTcb() { struct tls_tcb * tcb; # ifdef __HAVE___LWP_GETTCB_FAST tcb = (struct tls_tcb *)__lwp_gettcb_fast(); # elif defined(__HAVE___LWP_GETPRIVATE_FAST) tcb = (struct tls_tcb *)__lwp_getprivate_fast(); # endif return tcb; } uptr ThreadSelf() { return (uptr)ThreadSelfTlsTcb()->tcb_pthread; } int GetSizeFromHdr(struct dl_phdr_info *info, size_t size, void *data) { const Elf_Phdr *hdr = info->dlpi_phdr; const Elf_Phdr *last_hdr = hdr + info->dlpi_phnum; for (; hdr != last_hdr; ++hdr) { if (hdr->p_type == PT_TLS && info->dlpi_tls_modid == 1) { *(uptr*)data = hdr->p_memsz; break; } } return 0; } #endif // SANITIZER_NETBSD #if !SANITIZER_GO static void GetTls(uptr *addr, uptr *size) { #if SANITIZER_LINUX && !SANITIZER_ANDROID # if defined(__x86_64__) || defined(__i386__) || defined(__s390__) *addr = ThreadSelf(); *size = GetTlsSize(); *addr -= *size; *addr += ThreadDescriptorSize(); # elif defined(__mips__) || defined(__aarch64__) || defined(__powerpc64__) \ || defined(__arm__) *addr = ThreadSelf(); *size = GetTlsSize(); # else *addr = 0; *size = 0; # endif #elif SANITIZER_FREEBSD void** segbase = ThreadSelfSegbase(); *addr = 0; *size = 0; if (segbase != 0) { // tcbalign = 16 // tls_size = round(tls_static_space, tcbalign); // dtv = segbase[1]; // dtv[2] = segbase - tls_static_space; void **dtv = (void**) segbase[1]; *addr = (uptr) dtv[2]; *size = (*addr == 0) ? 0 : ((uptr) segbase[0] - (uptr) dtv[2]); } #elif SANITIZER_NETBSD struct tls_tcb * const tcb = ThreadSelfTlsTcb(); *addr = 0; *size = 0; if (tcb != 0) { // Find size (p_memsz) of dlpi_tls_modid 1 (TLS block of the main program). // ld.elf_so hardcodes the index 1. dl_iterate_phdr(GetSizeFromHdr, size); if (*size != 0) { // The block has been found and tcb_dtv[1] contains the base address *addr = (uptr)tcb->tcb_dtv[1]; } } #elif SANITIZER_ANDROID *addr = 0; *size = 0; #else # error "Unknown OS" #endif } #endif #if !SANITIZER_GO uptr GetTlsSize() { #if SANITIZER_FREEBSD || SANITIZER_ANDROID || SANITIZER_NETBSD uptr addr, size; GetTls(&addr, &size); return size; #elif defined(__mips__) || defined(__powerpc64__) return RoundUpTo(g_tls_size + TlsPreTcbSize(), 16); #else return g_tls_size; #endif } #endif void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size) { #if SANITIZER_GO // Stub implementation for Go. *stk_addr = *stk_size = *tls_addr = *tls_size = 0; #else GetTls(tls_addr, tls_size); uptr stack_top, stack_bottom; GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); *stk_addr = stack_bottom; *stk_size = stack_top - stack_bottom; if (!main) { // If stack and tls intersect, make them non-intersecting. if (*tls_addr > *stk_addr && *tls_addr < *stk_addr + *stk_size) { CHECK_GT(*tls_addr + *tls_size, *stk_addr); CHECK_LE(*tls_addr + *tls_size, *stk_addr + *stk_size); *stk_size -= *tls_size; *tls_addr = *stk_addr + *stk_size; } } #endif } # if !SANITIZER_FREEBSD typedef ElfW(Phdr) Elf_Phdr; # elif SANITIZER_WORDSIZE == 32 && __FreeBSD_version <= 902001 // v9.2 # define Elf_Phdr XElf32_Phdr # define dl_phdr_info xdl_phdr_info # define dl_iterate_phdr(c, b) xdl_iterate_phdr((c), (b)) # endif struct DlIteratePhdrData { InternalMmapVectorNoCtor *modules; bool first; }; static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) { DlIteratePhdrData *data = (DlIteratePhdrData*)arg; InternalScopedString module_name(kMaxPathLength); if (data->first) { data->first = false; // First module is the binary itself. ReadBinaryNameCached(module_name.data(), module_name.size()); } else if (info->dlpi_name) { module_name.append("%s", info->dlpi_name); } if (module_name[0] == '\0') return 0; LoadedModule cur_module; cur_module.set(module_name.data(), info->dlpi_addr); for (int i = 0; i < info->dlpi_phnum; i++) { const Elf_Phdr *phdr = &info->dlpi_phdr[i]; if (phdr->p_type == PT_LOAD) { uptr cur_beg = info->dlpi_addr + phdr->p_vaddr; uptr cur_end = cur_beg + phdr->p_memsz; bool executable = phdr->p_flags & PF_X; bool writable = phdr->p_flags & PF_W; cur_module.addAddressRange(cur_beg, cur_end, executable, writable); } } data->modules->push_back(cur_module); return 0; } #if SANITIZER_ANDROID && __ANDROID_API__ < 21 extern "C" __attribute__((weak)) int dl_iterate_phdr( int (*)(struct dl_phdr_info *, size_t, void *), void *); #endif static bool requiresProcmaps() { #if SANITIZER_ANDROID && __ANDROID_API__ <= 22 // Fall back to /proc/maps if dl_iterate_phdr is unavailable or broken. // The runtime check allows the same library to work with // both K and L (and future) Android releases. return AndroidGetApiLevel() <= ANDROID_LOLLIPOP_MR1; #else return false; #endif } static void procmapsInit(InternalMmapVectorNoCtor *modules) { MemoryMappingLayout memory_mapping(/*cache_enabled*/true); memory_mapping.DumpListOfModules(modules); } void ListOfModules::init() { clearOrInit(); if (requiresProcmaps()) { procmapsInit(&modules_); } else { DlIteratePhdrData data = {&modules_, true}; dl_iterate_phdr(dl_iterate_phdr_cb, &data); } } // When a custom loader is used, dl_iterate_phdr may not contain the full // list of modules. Allow callers to fall back to using procmaps. void ListOfModules::fallbackInit() { if (!requiresProcmaps()) { clearOrInit(); procmapsInit(&modules_); } else { clear(); } } // getrusage does not give us the current RSS, only the max RSS. // Still, this is better than nothing if /proc/self/statm is not available // for some reason, e.g. due to a sandbox. static uptr GetRSSFromGetrusage() { struct rusage usage; if (getrusage(RUSAGE_SELF, &usage)) // Failed, probably due to a sandbox. return 0; return usage.ru_maxrss << 10; // ru_maxrss is in Kb. } uptr GetRSS() { if (!common_flags()->can_use_proc_maps_statm) return GetRSSFromGetrusage(); fd_t fd = OpenFile("/proc/self/statm", RdOnly); if (fd == kInvalidFd) return GetRSSFromGetrusage(); char buf[64]; uptr len = internal_read(fd, buf, sizeof(buf) - 1); internal_close(fd); if ((sptr)len <= 0) return 0; buf[len] = 0; // The format of the file is: // 1084 89 69 11 0 79 0 // We need the second number which is RSS in pages. char *pos = buf; // Skip the first number. while (*pos >= '0' && *pos <= '9') pos++; // Skip whitespaces. while (!(*pos >= '0' && *pos <= '9') && *pos != 0) pos++; // Read the number. uptr rss = 0; while (*pos >= '0' && *pos <= '9') rss = rss * 10 + *pos++ - '0'; return rss * GetPageSizeCached(); } // sysconf(_SC_NPROCESSORS_{CONF,ONLN}) cannot be used as they allocate memory. u32 GetNumberOfCPUs() { #if SANITIZER_FREEBSD || SANITIZER_NETBSD u32 ncpu; int req[2]; size_t len = sizeof(ncpu); req[0] = CTL_HW; req[1] = HW_NCPU; CHECK_EQ(sysctl(req, 2, &ncpu, &len, NULL, 0), 0); return ncpu; #elif SANITIZER_ANDROID && !defined(CPU_COUNT) && !defined(__aarch64__) // Fall back to /sys/devices/system/cpu on Android when cpu_set_t doesn't // exist in sched.h. That is the case for toolchains generated with older // NDKs. // This code doesn't work on AArch64 because internal_getdents makes use of // the 64bit getdents syscall, but cpu_set_t seems to always exist on AArch64. uptr fd = internal_open("/sys/devices/system/cpu", O_RDONLY | O_DIRECTORY); if (internal_iserror(fd)) return 0; InternalScopedBuffer buffer(4096); uptr bytes_read = buffer.size(); uptr n_cpus = 0; u8 *d_type; struct linux_dirent *entry = (struct linux_dirent *)&buffer[bytes_read]; while (true) { if ((u8 *)entry >= &buffer[bytes_read]) { bytes_read = internal_getdents(fd, (struct linux_dirent *)buffer.data(), buffer.size()); if (internal_iserror(bytes_read) || !bytes_read) break; entry = (struct linux_dirent *)buffer.data(); } d_type = (u8 *)entry + entry->d_reclen - 1; if (d_type >= &buffer[bytes_read] || (u8 *)&entry->d_name[3] >= &buffer[bytes_read]) break; if (entry->d_ino != 0 && *d_type == DT_DIR) { if (entry->d_name[0] == 'c' && entry->d_name[1] == 'p' && entry->d_name[2] == 'u' && entry->d_name[3] >= '0' && entry->d_name[3] <= '9') n_cpus++; } entry = (struct linux_dirent *)(((u8 *)entry) + entry->d_reclen); } internal_close(fd); return n_cpus; #else cpu_set_t CPUs; CHECK_EQ(sched_getaffinity(0, sizeof(cpu_set_t), &CPUs), 0); return CPU_COUNT(&CPUs); #endif } #if SANITIZER_LINUX # if SANITIZER_ANDROID static atomic_uint8_t android_log_initialized; void AndroidLogInit() { openlog(GetProcessName(), 0, LOG_USER); atomic_store(&android_log_initialized, 1, memory_order_release); } static bool ShouldLogAfterPrintf() { return atomic_load(&android_log_initialized, memory_order_acquire); } extern "C" SANITIZER_WEAK_ATTRIBUTE int async_safe_write_log(int pri, const char* tag, const char* msg); extern "C" SANITIZER_WEAK_ATTRIBUTE int __android_log_write(int prio, const char* tag, const char* msg); // ANDROID_LOG_INFO is 4, but can't be resolved at runtime. #define SANITIZER_ANDROID_LOG_INFO 4 // async_safe_write_log is a new public version of __libc_write_log that is // used behind syslog. It is preferable to syslog as it will not do any dynamic // memory allocation or formatting. // If the function is not available, syslog is preferred for L+ (it was broken // pre-L) as __android_log_write triggers a racey behavior with the strncpy // interceptor. Fallback to __android_log_write pre-L. void WriteOneLineToSyslog(const char *s) { if (&async_safe_write_log) { async_safe_write_log(SANITIZER_ANDROID_LOG_INFO, GetProcessName(), s); } else if (AndroidGetApiLevel() > ANDROID_KITKAT) { syslog(LOG_INFO, "%s", s); } else { CHECK(&__android_log_write); __android_log_write(SANITIZER_ANDROID_LOG_INFO, nullptr, s); } } extern "C" SANITIZER_WEAK_ATTRIBUTE void android_set_abort_message(const char *); void SetAbortMessage(const char *str) { if (&android_set_abort_message) android_set_abort_message(str); } # else void AndroidLogInit() {} static bool ShouldLogAfterPrintf() { return true; } void WriteOneLineToSyslog(const char *s) { syslog(LOG_INFO, "%s", s); } void SetAbortMessage(const char *str) {} # endif // SANITIZER_ANDROID void LogMessageOnPrintf(const char *str) { if (common_flags()->log_to_syslog && ShouldLogAfterPrintf()) WriteToSyslog(str); } #endif // SANITIZER_LINUX // glibc cannot use clock_gettime from a preinit_array function as the vDSO // function pointers haven't been initialized yet. To prevent a crash, we check // for the presence of the glibc symbol __vdso_clock_gettime, and verify that it // is not null (it can be mangled so we can't use it directly). Bionic's // clock_gettime actually falls back to the syscall in the same situation. extern "C" SANITIZER_WEAK_ATTRIBUTE void *__vdso_clock_gettime; bool CanUseLibcClockGetTime() { return !SANITIZER_FREEBSD && !SANITIZER_NETBSD && (SANITIZER_ANDROID || (&__vdso_clock_gettime && __vdso_clock_gettime)); } // MonotonicNanoTime is a timing function that can leverage the vDSO by calling // clock_gettime. real_clock_gettime only exists if clock_gettime is // intercepted, so define it weakly and use it if available. extern "C" SANITIZER_WEAK_ATTRIBUTE int real_clock_gettime(u32 clk_id, void *tp); u64 MonotonicNanoTime() { timespec ts; if (CanUseLibcClockGetTime()) { if (&real_clock_gettime) real_clock_gettime(CLOCK_MONOTONIC, &ts); else clock_gettime(CLOCK_MONOTONIC, &ts); } else { internal_clock_gettime(CLOCK_MONOTONIC, &ts); } return (u64)ts.tv_sec * (1000ULL * 1000 * 1000) + ts.tv_nsec; } } // namespace __sanitizer #endif // SANITIZER_FREEBSD || SANITIZER_LINUX