//===-- sanitizer_fuchsia.cc ---------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===---------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and other sanitizer // run-time libraries and implements Fuchsia-specific functions from // sanitizer_common.h. //===---------------------------------------------------------------------===// #include "sanitizer_fuchsia.h" #if SANITIZER_FUCHSIA #include "sanitizer_common.h" #include "sanitizer_libc.h" #include "sanitizer_mutex.h" #include "sanitizer_stacktrace.h" #include #include #include #include #include #include #include #include namespace __sanitizer { void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); } uptr internal_sched_yield() { zx_status_t status = _zx_nanosleep(0); CHECK_EQ(status, ZX_OK); return 0; // Why doesn't this return void? } static void internal_nanosleep(zx_time_t ns) { zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns)); CHECK_EQ(status, ZX_OK); } unsigned int internal_sleep(unsigned int seconds) { internal_nanosleep(ZX_SEC(seconds)); return 0; } u64 NanoTime() { return _zx_time_get(ZX_CLOCK_UTC); } u64 MonotonicNanoTime() { return _zx_time_get(ZX_CLOCK_MONOTONIC); } uptr internal_getpid() { zx_info_handle_basic_t info; zx_status_t status = _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info, sizeof(info), NULL, NULL); CHECK_EQ(status, ZX_OK); uptr pid = static_cast(info.koid); CHECK_EQ(pid, info.koid); return pid; } uptr GetThreadSelf() { return reinterpret_cast(thrd_current()); } uptr GetTid() { return GetThreadSelf(); } void Abort() { abort(); } int Atexit(void (*function)(void)) { return atexit(function); } void SleepForSeconds(int seconds) { internal_sleep(seconds); } void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); } void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) { pthread_attr_t attr; CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); void *base; size_t size; CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0); CHECK_EQ(pthread_attr_destroy(&attr), 0); *stack_bottom = reinterpret_cast(base); *stack_top = *stack_bottom + size; } void MaybeReexec() {} void PrepareForSandboxing(__sanitizer_sandbox_arguments *args) {} void DisableCoreDumperIfNecessary() {} void InstallDeadlySignalHandlers(SignalHandlerType handler) {} void StartReportDeadlySignal() {} void ReportDeadlySignal(const SignalContext &sig, u32 tid, UnwindSignalStackCallbackType unwind, const void *unwind_context) {} void SetAlternateSignalStack() {} void UnsetAlternateSignalStack() {} void InitTlsSize() {} void PrintModuleMap() {} bool SignalContext::IsStackOverflow() const { return false; } void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); } const char *SignalContext::Describe() const { UNIMPLEMENTED(); } struct UnwindTraceArg { BufferedStackTrace *stack; u32 max_depth; }; _Unwind_Reason_Code Unwind_Trace(struct _Unwind_Context *ctx, void *param) { UnwindTraceArg *arg = static_cast(param); CHECK_LT(arg->stack->size, arg->max_depth); uptr pc = _Unwind_GetIP(ctx); if (pc < PAGE_SIZE) return _URC_NORMAL_STOP; arg->stack->trace_buffer[arg->stack->size++] = pc; return (arg->stack->size == arg->max_depth ? _URC_NORMAL_STOP : _URC_NO_REASON); } void BufferedStackTrace::SlowUnwindStack(uptr pc, u32 max_depth) { CHECK_GE(max_depth, 2); size = 0; UnwindTraceArg arg = {this, Min(max_depth + 1, kStackTraceMax)}; _Unwind_Backtrace(Unwind_Trace, &arg); CHECK_GT(size, 0); // We need to pop a few frames so that pc is on top. uptr to_pop = LocatePcInTrace(pc); // trace_buffer[0] belongs to the current function so we always pop it, // unless there is only 1 frame in the stack trace (1 frame is always better // than 0!). PopStackFrames(Min(to_pop, static_cast(1))); trace_buffer[0] = pc; } void BufferedStackTrace::SlowUnwindStackWithContext(uptr pc, void *context, u32 max_depth) { CHECK_NE(context, nullptr); UNREACHABLE("signal context doesn't exist"); } enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 }; BlockingMutex::BlockingMutex() { // NOTE! It's important that this use internal_memset, because plain // memset might be intercepted (e.g., actually be __asan_memset). // Defining this so the compiler initializes each field, e.g.: // BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {} // might result in the compiler generating a call to memset, which would // have the same problem. internal_memset(this, 0, sizeof(*this)); } void BlockingMutex::Lock() { CHECK_EQ(owner_, 0); atomic_uint32_t *m = reinterpret_cast(&opaque_storage_); if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked) return; while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) { zx_status_t status = _zx_futex_wait(reinterpret_cast(m), MtxSleeping, ZX_TIME_INFINITE); if (status != ZX_ERR_BAD_STATE) // Normal race. CHECK_EQ(status, ZX_OK); } } void BlockingMutex::Unlock() { atomic_uint32_t *m = reinterpret_cast(&opaque_storage_); u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release); CHECK_NE(v, MtxUnlocked); if (v == MtxSleeping) { zx_status_t status = _zx_futex_wake(reinterpret_cast(m), 1); CHECK_EQ(status, ZX_OK); } } void BlockingMutex::CheckLocked() { atomic_uint32_t *m = reinterpret_cast(&opaque_storage_); CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed)); } uptr GetPageSize() { return PAGE_SIZE; } uptr GetMmapGranularity() { return PAGE_SIZE; } sanitizer_shadow_bounds_t ShadowBounds; uptr GetMaxUserVirtualAddress() { ShadowBounds = __sanitizer_shadow_bounds(); return ShadowBounds.memory_limit - 1; } uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); } static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type, bool raw_report, bool die_for_nomem) { size = RoundUpTo(size, PAGE_SIZE); zx_handle_t vmo; zx_status_t status = _zx_vmo_create(size, 0, &vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY || die_for_nomem) ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, raw_report); return nullptr; } _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, internal_strlen(mem_type)); // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? uintptr_t addr; status = _zx_vmar_map(_zx_vmar_root_self(), 0, vmo, 0, size, ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE, &addr); _zx_handle_close(vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY || die_for_nomem) ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, raw_report); return nullptr; } IncreaseTotalMmap(size); return reinterpret_cast(addr); } void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { return DoAnonymousMmapOrDie(size, mem_type, raw_report, true); } void *MmapNoReserveOrDie(uptr size, const char *mem_type) { return MmapOrDie(size, mem_type); } void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { return DoAnonymousMmapOrDie(size, mem_type, false, false); } uptr ReservedAddressRange::Init(uptr init_size, const char *name, uptr fixed_addr) { init_size = RoundUpTo(init_size, PAGE_SIZE); DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID); uintptr_t base; zx_handle_t vmar; zx_status_t status = _zx_vmar_allocate(_zx_vmar_root_self(), 0, init_size, ZX_VM_FLAG_CAN_MAP_READ | ZX_VM_FLAG_CAN_MAP_WRITE | ZX_VM_FLAG_CAN_MAP_SPECIFIC, &vmar, &base); if (status != ZX_OK) ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status); base_ = reinterpret_cast(base); size_ = init_size; name_ = name; os_handle_ = vmar; return reinterpret_cast(base_); } static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size, void *base, const char *name, bool die_for_nomem) { uptr offset = fixed_addr - reinterpret_cast(base); map_size = RoundUpTo(map_size, PAGE_SIZE); zx_handle_t vmo; zx_status_t status = _zx_vmo_create(map_size, 0, &vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY || die_for_nomem) ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status); return 0; } _zx_object_set_property(vmo, ZX_PROP_NAME, name, sizeof(name) - 1); DCHECK_GE(base + size_, map_size + offset); uintptr_t addr; status = _zx_vmar_map( vmar, offset, vmo, 0, map_size, ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE | ZX_VM_FLAG_SPECIFIC, &addr); _zx_handle_close(vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY || die_for_nomem) { ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status); } return 0; } IncreaseTotalMmap(map_size); return addr; } uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size) { return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, name_, false); } uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size) { return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, name_, true); } void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) { if (!addr || !size) return; size = RoundUpTo(size, PAGE_SIZE); zx_status_t status = _zx_vmar_unmap(target_vmar, reinterpret_cast(addr), size); if (status != ZX_OK) { Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n", SanitizerToolName, size, size, addr); CHECK("unable to unmap" && 0); } DecreaseTotalMmap(size); } void ReservedAddressRange::Unmap(uptr fixed_addr, uptr size) { uptr offset = fixed_addr - reinterpret_cast(base_); uptr addr = reinterpret_cast(base_) + offset; void *addr_as_void = reinterpret_cast(addr); uptr base_as_uptr = reinterpret_cast(base_); // Only unmap at the beginning or end of the range. CHECK((addr_as_void == base_) || (addr + size == base_as_uptr + size_)); CHECK_LE(size, size_); UnmapOrDieVmar(reinterpret_cast(addr), size, static_cast(os_handle_)); if (addr_as_void == base_) { base_ = reinterpret_cast(addr + size); } size_ = size_ - size; } // This should never be called. void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { UNIMPLEMENTED(); } void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, const char *mem_type) { CHECK_GE(size, PAGE_SIZE); CHECK(IsPowerOfTwo(size)); CHECK(IsPowerOfTwo(alignment)); zx_handle_t vmo; zx_status_t status = _zx_vmo_create(size, 0, &vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY) ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false); return nullptr; } _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, internal_strlen(mem_type)); // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? // Map a larger size to get a chunk of address space big enough that // it surely contains an aligned region of the requested size. Then // overwrite the aligned middle portion with a mapping from the // beginning of the VMO, and unmap the excess before and after. size_t map_size = size + alignment; uintptr_t addr; status = _zx_vmar_map(_zx_vmar_root_self(), 0, vmo, 0, map_size, ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE, &addr); if (status == ZX_OK) { uintptr_t map_addr = addr; uintptr_t map_end = map_addr + map_size; addr = RoundUpTo(map_addr, alignment); uintptr_t end = addr + size; if (addr != map_addr) { zx_info_vmar_t info; status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info, sizeof(info), NULL, NULL); if (status == ZX_OK) { uintptr_t new_addr; status = _zx_vmar_map(_zx_vmar_root_self(), addr - info.base, vmo, 0, size, ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE | ZX_VM_FLAG_SPECIFIC_OVERWRITE, &new_addr); if (status == ZX_OK) CHECK_EQ(new_addr, addr); } } if (status == ZX_OK && addr != map_addr) status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr); if (status == ZX_OK && end != map_end) status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end); } _zx_handle_close(vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY) ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false); return nullptr; } IncreaseTotalMmap(size); return reinterpret_cast(addr); } void UnmapOrDie(void *addr, uptr size) { UnmapOrDieVmar(addr, size, _zx_vmar_root_self()); } // This is used on the shadow mapping, which cannot be changed. // Zircon doesn't have anything like MADV_DONTNEED. void ReleaseMemoryPagesToOS(uptr beg, uptr end) {} void DumpProcessMap() { // TODO(mcgrathr): write it return; } bool IsAccessibleMemoryRange(uptr beg, uptr size) { // TODO(mcgrathr): Figure out a better way. zx_handle_t vmo; zx_status_t status = _zx_vmo_create(size, 0, &vmo); if (status == ZX_OK) { while (size > 0) { size_t wrote; status = _zx_vmo_write(vmo, reinterpret_cast(beg), 0, size, &wrote); if (status != ZX_OK) break; CHECK_GT(wrote, 0); CHECK_LE(wrote, size); beg += wrote; size -= wrote; } _zx_handle_close(vmo); } return status == ZX_OK; } // FIXME implement on this platform. void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {} bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, uptr *read_len, uptr max_len, error_t *errno_p) { zx_handle_t vmo; zx_status_t status = __sanitizer_get_configuration(file_name, &vmo); if (status == ZX_OK) { uint64_t vmo_size; status = _zx_vmo_get_size(vmo, &vmo_size); if (status == ZX_OK) { if (vmo_size < max_len) max_len = vmo_size; size_t map_size = RoundUpTo(max_len, PAGE_SIZE); uintptr_t addr; status = _zx_vmar_map(_zx_vmar_root_self(), 0, vmo, 0, map_size, ZX_VM_FLAG_PERM_READ, &addr); if (status == ZX_OK) { *buff = reinterpret_cast(addr); *buff_size = map_size; *read_len = max_len; } } _zx_handle_close(vmo); } if (status != ZX_OK && errno_p) *errno_p = status; return status == ZX_OK; } void RawWrite(const char *buffer) { __sanitizer_log_write(buffer, internal_strlen(buffer)); } void CatastrophicErrorWrite(const char *buffer, uptr length) { __sanitizer_log_write(buffer, length); } char **StoredArgv; char **StoredEnviron; char **GetArgv() { return StoredArgv; } const char *GetEnv(const char *name) { if (StoredEnviron) { uptr NameLen = internal_strlen(name); for (char **Env = StoredEnviron; *Env != 0; Env++) { if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') return (*Env) + NameLen + 1; } } return nullptr; } uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) { const char *argv0 = StoredArgv[0]; if (!argv0) argv0 = ""; internal_strncpy(buf, argv0, buf_len); return internal_strlen(buf); } uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { return ReadBinaryName(buf, buf_len); } uptr MainThreadStackBase, MainThreadStackSize; bool GetRandom(void *buffer, uptr length, bool blocking) { CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN); size_t size; CHECK_EQ(_zx_cprng_draw(buffer, length, &size), ZX_OK); CHECK_EQ(size, length); return true; } u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); } uptr GetRSS() { UNIMPLEMENTED(); } } // namespace __sanitizer using namespace __sanitizer; // NOLINT extern "C" { void __sanitizer_startup_hook(int argc, char **argv, char **envp, void *stack_base, size_t stack_size) { __sanitizer::StoredArgv = argv; __sanitizer::StoredEnviron = envp; __sanitizer::MainThreadStackBase = reinterpret_cast(stack_base); __sanitizer::MainThreadStackSize = stack_size; } void __sanitizer_set_report_path(const char *path) { // Handle the initialization code in each sanitizer, but no other calls. // This setting is never consulted on Fuchsia. DCHECK_EQ(path, common_flags()->log_path); } void __sanitizer_set_report_fd(void *fd) { UNREACHABLE("not available on Fuchsia"); } } // extern "C" #endif // SANITIZER_FUCHSIA