//===-- sanitizer_deadlock_detector.h ---------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of Sanitizer runtime. // The deadlock detector maintains a directed graph of lock acquisitions. // When a lock event happens, the detector checks if the locks already held by // the current thread are reachable from the newly acquired lock. // // The detector can handle only a fixed amount of simultaneously live locks // (a lock is alive if it has been locked at least once and has not been // destroyed). When the maximal number of locks is reached the entire graph // is flushed and the new lock epoch is started. The node ids from the old // epochs can not be used with any of the detector methods except for // nodeBelongsToCurrentEpoch(). // // FIXME: this is work in progress, nothing really works yet. // //===----------------------------------------------------------------------===// #ifndef SANITIZER_DEADLOCK_DETECTOR_H #define SANITIZER_DEADLOCK_DETECTOR_H #include "sanitizer_common.h" #include "sanitizer_bvgraph.h" namespace __sanitizer { // Thread-local state for DeadlockDetector. // It contains the locks currently held by the owning thread. template class DeadlockDetectorTLS { public: // No CTOR. void clear() { bv_.clear(); epoch_ = 0; n_recursive_locks = 0; n_all_locks_ = 0; } bool empty() const { return bv_.empty(); } void ensureCurrentEpoch(uptr current_epoch) { if (epoch_ == current_epoch) return; bv_.clear(); epoch_ = current_epoch; n_recursive_locks = 0; n_all_locks_ = 0; } uptr getEpoch() const { return epoch_; } // Returns true if this is the first (non-recursive) acquisition of this lock. bool addLock(uptr lock_id, uptr current_epoch, u32 stk) { // Printf("addLock: %zx %zx stk %u\n", lock_id, current_epoch, stk); CHECK_EQ(epoch_, current_epoch); if (!bv_.setBit(lock_id)) { // The lock is already held by this thread, it must be recursive. CHECK_LT(n_recursive_locks, ARRAY_SIZE(recursive_locks)); recursive_locks[n_recursive_locks++] = lock_id; return false; } CHECK_LT(n_all_locks_, ARRAY_SIZE(all_locks_with_contexts_)); // lock_id < BV::kSize, can cast to a smaller int. u32 lock_id_short = static_cast(lock_id); LockWithContext l = {lock_id_short, stk}; all_locks_with_contexts_[n_all_locks_++] = l; return true; } void removeLock(uptr lock_id) { if (n_recursive_locks) { for (sptr i = n_recursive_locks - 1; i >= 0; i--) { if (recursive_locks[i] == lock_id) { n_recursive_locks--; Swap(recursive_locks[i], recursive_locks[n_recursive_locks]); return; } } } // Printf("remLock: %zx %zx\n", lock_id, epoch_); if (!bv_.clearBit(lock_id)) return; // probably addLock happened before flush if (n_all_locks_) { for (sptr i = n_all_locks_ - 1; i >= 0; i--) { if (all_locks_with_contexts_[i].lock == static_cast(lock_id)) { Swap(all_locks_with_contexts_[i], all_locks_with_contexts_[n_all_locks_ - 1]); n_all_locks_--; break; } } } } u32 findLockContext(uptr lock_id) { for (uptr i = 0; i < n_all_locks_; i++) if (all_locks_with_contexts_[i].lock == static_cast(lock_id)) return all_locks_with_contexts_[i].stk; return 0; } const BV &getLocks(uptr current_epoch) const { CHECK_EQ(epoch_, current_epoch); return bv_; } uptr getNumLocks() const { return n_all_locks_; } uptr getLock(uptr idx) const { return all_locks_with_contexts_[idx].lock; } private: BV bv_; uptr epoch_; uptr recursive_locks[64]; uptr n_recursive_locks; struct LockWithContext { u32 lock; u32 stk; }; LockWithContext all_locks_with_contexts_[64]; uptr n_all_locks_; }; // DeadlockDetector. // For deadlock detection to work we need one global DeadlockDetector object // and one DeadlockDetectorTLS object per evey thread. // This class is not thread safe, all concurrent accesses should be guarded // by an external lock. // Most of the methods of this class are not thread-safe (i.e. should // be protected by an external lock) unless explicitly told otherwise. template class DeadlockDetector { public: typedef BV BitVector; uptr size() const { return g_.size(); } // No CTOR. void clear() { current_epoch_ = 0; available_nodes_.clear(); recycled_nodes_.clear(); g_.clear(); n_edges_ = 0; } // Allocate new deadlock detector node. // If we are out of available nodes first try to recycle some. // If there is nothing to recycle, flush the graph and increment the epoch. // Associate 'data' (opaque user's object) with the new node. uptr newNode(uptr data) { if (!available_nodes_.empty()) return getAvailableNode(data); if (!recycled_nodes_.empty()) { // Printf("recycling: n_edges_ %zd\n", n_edges_); for (sptr i = n_edges_ - 1; i >= 0; i--) { if (recycled_nodes_.getBit(edges_[i].from) || recycled_nodes_.getBit(edges_[i].to)) { Swap(edges_[i], edges_[n_edges_ - 1]); n_edges_--; } } CHECK(available_nodes_.empty()); // removeEdgesFrom was called in removeNode. g_.removeEdgesTo(recycled_nodes_); available_nodes_.setUnion(recycled_nodes_); recycled_nodes_.clear(); return getAvailableNode(data); } // We are out of vacant nodes. Flush and increment the current_epoch_. current_epoch_ += size(); recycled_nodes_.clear(); available_nodes_.setAll(); g_.clear(); n_edges_ = 0; return getAvailableNode(data); } // Get data associated with the node created by newNode(). uptr getData(uptr node) const { return data_[nodeToIndex(node)]; } bool nodeBelongsToCurrentEpoch(uptr node) { return node && (node / size() * size()) == current_epoch_; } void removeNode(uptr node) { uptr idx = nodeToIndex(node); CHECK(!available_nodes_.getBit(idx)); CHECK(recycled_nodes_.setBit(idx)); g_.removeEdgesFrom(idx); } void ensureCurrentEpoch(DeadlockDetectorTLS *dtls) { dtls->ensureCurrentEpoch(current_epoch_); } // Returns true if there is a cycle in the graph after this lock event. // Ideally should be called before the lock is acquired so that we can // report a deadlock before a real deadlock happens. bool onLockBefore(DeadlockDetectorTLS *dtls, uptr cur_node) { ensureCurrentEpoch(dtls); uptr cur_idx = nodeToIndex(cur_node); return g_.isReachable(cur_idx, dtls->getLocks(current_epoch_)); } u32 findLockContext(DeadlockDetectorTLS *dtls, uptr node) { return dtls->findLockContext(nodeToIndex(node)); } // Add cur_node to the set of locks held currently by dtls. void onLockAfter(DeadlockDetectorTLS *dtls, uptr cur_node, u32 stk = 0) { ensureCurrentEpoch(dtls); uptr cur_idx = nodeToIndex(cur_node); dtls->addLock(cur_idx, current_epoch_, stk); } // Experimental *racy* fast path function. // Returns true if all edges from the currently held locks to cur_node exist. bool hasAllEdges(DeadlockDetectorTLS *dtls, uptr cur_node) { uptr local_epoch = dtls->getEpoch(); // Read from current_epoch_ is racy. if (cur_node && local_epoch == current_epoch_ && local_epoch == nodeToEpoch(cur_node)) { uptr cur_idx = nodeToIndexUnchecked(cur_node); for (uptr i = 0, n = dtls->getNumLocks(); i < n; i++) { if (!g_.hasEdge(dtls->getLock(i), cur_idx)) return false; } return true; } return false; } // Adds edges from currently held locks to cur_node, // returns the number of added edges, and puts the sources of added edges // into added_edges[]. // Should be called before onLockAfter. uptr addEdges(DeadlockDetectorTLS *dtls, uptr cur_node, u32 stk, int unique_tid) { ensureCurrentEpoch(dtls); uptr cur_idx = nodeToIndex(cur_node); uptr added_edges[40]; uptr n_added_edges = g_.addEdges(dtls->getLocks(current_epoch_), cur_idx, added_edges, ARRAY_SIZE(added_edges)); for (uptr i = 0; i < n_added_edges; i++) { if (n_edges_ < ARRAY_SIZE(edges_)) { Edge e = {(u16)added_edges[i], (u16)cur_idx, dtls->findLockContext(added_edges[i]), stk, unique_tid}; edges_[n_edges_++] = e; } // Printf("Edge%zd: %u %zd=>%zd in T%d\n", // n_edges_, stk, added_edges[i], cur_idx, unique_tid); } return n_added_edges; } bool findEdge(uptr from_node, uptr to_node, u32 *stk_from, u32 *stk_to, int *unique_tid) { uptr from_idx = nodeToIndex(from_node); uptr to_idx = nodeToIndex(to_node); for (uptr i = 0; i < n_edges_; i++) { if (edges_[i].from == from_idx && edges_[i].to == to_idx) { *stk_from = edges_[i].stk_from; *stk_to = edges_[i].stk_to; *unique_tid = edges_[i].unique_tid; return true; } } return false; } // Test-only function. Handles the before/after lock events, // returns true if there is a cycle. bool onLock(DeadlockDetectorTLS *dtls, uptr cur_node, u32 stk = 0) { ensureCurrentEpoch(dtls); bool is_reachable = !isHeld(dtls, cur_node) && onLockBefore(dtls, cur_node); addEdges(dtls, cur_node, stk, 0); onLockAfter(dtls, cur_node, stk); return is_reachable; } // Handles the try_lock event, returns false. // When a try_lock event happens (i.e. a try_lock call succeeds) we need // to add this lock to the currently held locks, but we should not try to // change the lock graph or to detect a cycle. We may want to investigate // whether a more aggressive strategy is possible for try_lock. bool onTryLock(DeadlockDetectorTLS *dtls, uptr cur_node, u32 stk = 0) { ensureCurrentEpoch(dtls); uptr cur_idx = nodeToIndex(cur_node); dtls->addLock(cur_idx, current_epoch_, stk); return false; } // Returns true iff dtls is empty (no locks are currently held) and we can // add the node to the currently held locks w/o chanding the global state. // This operation is thread-safe as it only touches the dtls. bool onFirstLock(DeadlockDetectorTLS *dtls, uptr node, u32 stk = 0) { if (!dtls->empty()) return false; if (dtls->getEpoch() && dtls->getEpoch() == nodeToEpoch(node)) { dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk); return true; } return false; } // Finds a path between the lock 'cur_node' (currently not held in dtls) // and some currently held lock, returns the length of the path // or 0 on failure. uptr findPathToLock(DeadlockDetectorTLS *dtls, uptr cur_node, uptr *path, uptr path_size) { tmp_bv_.copyFrom(dtls->getLocks(current_epoch_)); uptr idx = nodeToIndex(cur_node); CHECK(!tmp_bv_.getBit(idx)); uptr res = g_.findShortestPath(idx, tmp_bv_, path, path_size); for (uptr i = 0; i < res; i++) path[i] = indexToNode(path[i]); if (res) CHECK_EQ(path[0], cur_node); return res; } // Handle the unlock event. // This operation is thread-safe as it only touches the dtls. void onUnlock(DeadlockDetectorTLS *dtls, uptr node) { if (dtls->getEpoch() == nodeToEpoch(node)) dtls->removeLock(nodeToIndexUnchecked(node)); } // Tries to handle the lock event w/o writing to global state. // Returns true on success. // This operation is thread-safe as it only touches the dtls // (modulo racy nature of hasAllEdges). bool onLockFast(DeadlockDetectorTLS *dtls, uptr node, u32 stk = 0) { if (hasAllEdges(dtls, node)) { dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk); return true; } return false; } bool isHeld(DeadlockDetectorTLS *dtls, uptr node) const { return dtls->getLocks(current_epoch_).getBit(nodeToIndex(node)); } uptr testOnlyGetEpoch() const { return current_epoch_; } bool testOnlyHasEdge(uptr l1, uptr l2) { return g_.hasEdge(nodeToIndex(l1), nodeToIndex(l2)); } // idx1 and idx2 are raw indices to g_, not lock IDs. bool testOnlyHasEdgeRaw(uptr idx1, uptr idx2) { return g_.hasEdge(idx1, idx2); } void Print() { for (uptr from = 0; from < size(); from++) for (uptr to = 0; to < size(); to++) if (g_.hasEdge(from, to)) Printf(" %zx => %zx\n", from, to); } private: void check_idx(uptr idx) const { CHECK_LT(idx, size()); } void check_node(uptr node) const { CHECK_GE(node, size()); CHECK_EQ(current_epoch_, nodeToEpoch(node)); } uptr indexToNode(uptr idx) const { check_idx(idx); return idx + current_epoch_; } uptr nodeToIndexUnchecked(uptr node) const { return node % size(); } uptr nodeToIndex(uptr node) const { check_node(node); return nodeToIndexUnchecked(node); } uptr nodeToEpoch(uptr node) const { return node / size() * size(); } uptr getAvailableNode(uptr data) { uptr idx = available_nodes_.getAndClearFirstOne(); data_[idx] = data; return indexToNode(idx); } struct Edge { u16 from; u16 to; u32 stk_from; u32 stk_to; int unique_tid; }; uptr current_epoch_; BV available_nodes_; BV recycled_nodes_; BV tmp_bv_; BVGraph g_; uptr data_[BV::kSize]; Edge edges_[BV::kSize * 32]; uptr n_edges_; }; } // namespace __sanitizer #endif // SANITIZER_DEADLOCK_DETECTOR_H