//===-- sanitizer_coverage.cc ---------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Sanitizer Coverage. // This file implements run-time support for a poor man's coverage tool. // // Compiler instrumentation: // For every interesting basic block the compiler injects the following code: // if (Guard < 0) { // __sanitizer_cov(&Guard); // } // At the module start up time __sanitizer_cov_module_init sets the guards // to consecutive negative numbers (-1, -2, -3, ...). // It's fine to call __sanitizer_cov more than once for a given block. // // Run-time: // - __sanitizer_cov(): record that we've executed the PC (GET_CALLER_PC). // and atomically set Guard to -Guard. // - __sanitizer_cov_dump: dump the coverage data to disk. // For every module of the current process that has coverage data // this will create a file module_name.PID.sancov. // // The file format is simple: the first 8 bytes is the magic, // one of 0xC0BFFFFFFFFFFF64 and 0xC0BFFFFFFFFFFF32. The last byte of the // magic defines the size of the following offsets. // The rest of the data is the offsets in the module. // // Eventually, this coverage implementation should be obsoleted by a more // powerful general purpose Clang/LLVM coverage instrumentation. // Consider this implementation as prototype. // // FIXME: support (or at least test with) dlclose. //===----------------------------------------------------------------------===// #include "sanitizer_allocator_internal.h" #include "sanitizer_common.h" #include "sanitizer_libc.h" #include "sanitizer_mutex.h" #include "sanitizer_procmaps.h" #include "sanitizer_stacktrace.h" #include "sanitizer_symbolizer.h" #include "sanitizer_flags.h" static const u64 kMagic64 = 0xC0BFFFFFFFFFFF64ULL; static const u64 kMagic32 = 0xC0BFFFFFFFFFFF32ULL; static const uptr kNumWordsForMagic = SANITIZER_WORDSIZE == 64 ? 1 : 2; static const u64 kMagic = SANITIZER_WORDSIZE == 64 ? kMagic64 : kMagic32; static atomic_uint32_t dump_once_guard; // Ensure that CovDump runs only once. static atomic_uintptr_t coverage_counter; static atomic_uintptr_t caller_callee_counter; static void ResetGlobalCounters() { return atomic_store(&coverage_counter, 0, memory_order_relaxed); return atomic_store(&caller_callee_counter, 0, memory_order_relaxed); } // pc_array is the array containing the covered PCs. // To make the pc_array thread- and async-signal-safe it has to be large enough. // 128M counters "ought to be enough for anybody" (4M on 32-bit). // With coverage_direct=1 in ASAN_OPTIONS, pc_array memory is mapped to a file. // In this mode, __sanitizer_cov_dump does nothing, and CovUpdateMapping() // dump current memory layout to another file. static bool cov_sandboxed = false; static fd_t cov_fd = kInvalidFd; static unsigned int cov_max_block_size = 0; static bool coverage_enabled = false; static const char *coverage_dir; namespace __sanitizer { class CoverageData { public: void Init(); void Enable(); void Disable(); void ReInit(); void BeforeFork(); void AfterFork(int child_pid); void Extend(uptr npcs); void Add(uptr pc, u32 *guard); void IndirCall(uptr caller, uptr callee, uptr callee_cache[], uptr cache_size); void DumpCallerCalleePairs(); void DumpTrace(); void DumpAsBitSet(); void DumpCounters(); void DumpOffsets(); void DumpAll(); ALWAYS_INLINE void TraceBasicBlock(u32 *id); void InitializeGuardArray(s32 *guards); void InitializeGuards(s32 *guards, uptr n, const char *module_name, uptr caller_pc); void InitializeCounters(u8 *counters, uptr n); void ReinitializeGuards(); uptr GetNumberOf8bitCounters(); uptr Update8bitCounterBitsetAndClearCounters(u8 *bitset); uptr *data(); uptr size() const; uptr *buffer() const { return pc_buffer; } private: struct NamedPcRange { const char *copied_module_name; uptr beg, end; // elements [beg,end) in pc_array. }; void DirectOpen(); void UpdateModuleNameVec(uptr caller_pc, uptr range_beg, uptr range_end); void GetRangeOffsets(const NamedPcRange& r, Symbolizer* s, InternalMmapVector* offsets) const; // Maximal size pc array may ever grow. // We MmapNoReserve this space to ensure that the array is contiguous. static const uptr kPcArrayMaxSize = FIRST_32_SECOND_64( 1 << (SANITIZER_ANDROID ? 24 : (SANITIZER_WINDOWS ? 27 : 26)), 1 << 27); // The amount file mapping for the pc array is grown by. static const uptr kPcArrayMmapSize = 64 * 1024; // pc_array is allocated with MmapNoReserveOrDie and so it uses only as // much RAM as it really needs. uptr *pc_array; // Index of the first available pc_array slot. atomic_uintptr_t pc_array_index; // Array size. atomic_uintptr_t pc_array_size; // Current file mapped size of the pc array. uptr pc_array_mapped_size; // Descriptor of the file mapped pc array. fd_t pc_fd; uptr *pc_buffer; // Vector of coverage guard arrays, protected by mu. InternalMmapVectorNoCtor guard_array_vec; // Vector of module and compilation unit pc ranges. InternalMmapVectorNoCtor comp_unit_name_vec; InternalMmapVectorNoCtor module_name_vec; struct CounterAndSize { u8 *counters; uptr n; }; InternalMmapVectorNoCtor counters_vec; uptr num_8bit_counters; // Caller-Callee (cc) array, size and current index. static const uptr kCcArrayMaxSize = FIRST_32_SECOND_64(1 << 18, 1 << 24); uptr **cc_array; atomic_uintptr_t cc_array_index; atomic_uintptr_t cc_array_size; // Tracing event array, size and current pointer. // We record all events (basic block entries) in a global buffer of u32 // values. Each such value is the index in pc_array. // So far the tracing is highly experimental: // - not thread-safe; // - does not support long traces; // - not tuned for performance. static const uptr kTrEventArrayMaxSize = FIRST_32_SECOND_64(1 << 22, 1 << 30); u32 *tr_event_array; uptr tr_event_array_size; u32 *tr_event_pointer; static const uptr kTrPcArrayMaxSize = FIRST_32_SECOND_64(1 << 22, 1 << 27); StaticSpinMutex mu; }; static CoverageData coverage_data; void CovUpdateMapping(const char *path, uptr caller_pc = 0); void CoverageData::DirectOpen() { InternalScopedString path(kMaxPathLength); internal_snprintf((char *)path.data(), path.size(), "%s/%zd.sancov.raw", coverage_dir, internal_getpid()); pc_fd = OpenFile(path.data(), RdWr); if (pc_fd == kInvalidFd) { Report("Coverage: failed to open %s for reading/writing\n", path.data()); Die(); } pc_array_mapped_size = 0; CovUpdateMapping(coverage_dir); } void CoverageData::Init() { pc_fd = kInvalidFd; } void CoverageData::Enable() { if (pc_array) return; pc_array = reinterpret_cast( MmapNoReserveOrDie(sizeof(uptr) * kPcArrayMaxSize, "CovInit")); atomic_store(&pc_array_index, 0, memory_order_relaxed); if (common_flags()->coverage_direct) { atomic_store(&pc_array_size, 0, memory_order_relaxed); } else { atomic_store(&pc_array_size, kPcArrayMaxSize, memory_order_relaxed); } pc_buffer = nullptr; if (common_flags()->coverage_pc_buffer) pc_buffer = reinterpret_cast(MmapNoReserveOrDie( sizeof(uptr) * kPcArrayMaxSize, "CovInit::pc_buffer")); cc_array = reinterpret_cast(MmapNoReserveOrDie( sizeof(uptr *) * kCcArrayMaxSize, "CovInit::cc_array")); atomic_store(&cc_array_size, kCcArrayMaxSize, memory_order_relaxed); atomic_store(&cc_array_index, 0, memory_order_relaxed); // Allocate tr_event_array with a guard page at the end. tr_event_array = reinterpret_cast(MmapNoReserveOrDie( sizeof(tr_event_array[0]) * kTrEventArrayMaxSize + GetMmapGranularity(), "CovInit::tr_event_array")); MprotectNoAccess( reinterpret_cast(&tr_event_array[kTrEventArrayMaxSize]), GetMmapGranularity()); tr_event_array_size = kTrEventArrayMaxSize; tr_event_pointer = tr_event_array; num_8bit_counters = 0; } void CoverageData::InitializeGuardArray(s32 *guards) { Enable(); // Make sure coverage is enabled at this point. s32 n = guards[0]; for (s32 j = 1; j <= n; j++) { uptr idx = atomic_load_relaxed(&pc_array_index); atomic_store_relaxed(&pc_array_index, idx + 1); guards[j] = -static_cast(idx + 1); } } void CoverageData::Disable() { if (pc_array) { UnmapOrDie(pc_array, sizeof(uptr) * kPcArrayMaxSize); pc_array = nullptr; } if (cc_array) { UnmapOrDie(cc_array, sizeof(uptr *) * kCcArrayMaxSize); cc_array = nullptr; } if (pc_buffer) { UnmapOrDie(pc_buffer, sizeof(uptr) * kPcArrayMaxSize); pc_buffer = nullptr; } if (tr_event_array) { UnmapOrDie(tr_event_array, sizeof(tr_event_array[0]) * kTrEventArrayMaxSize + GetMmapGranularity()); tr_event_array = nullptr; tr_event_pointer = nullptr; } if (pc_fd != kInvalidFd) { CloseFile(pc_fd); pc_fd = kInvalidFd; } } void CoverageData::ReinitializeGuards() { // Assuming single thread. atomic_store(&pc_array_index, 0, memory_order_relaxed); for (uptr i = 0; i < guard_array_vec.size(); i++) InitializeGuardArray(guard_array_vec[i]); } void CoverageData::ReInit() { Disable(); if (coverage_enabled) { if (common_flags()->coverage_direct) { // In memory-mapped mode we must extend the new file to the known array // size. uptr size = atomic_load(&pc_array_size, memory_order_relaxed); uptr npcs = size / sizeof(uptr); Enable(); if (size) Extend(npcs); if (coverage_enabled) CovUpdateMapping(coverage_dir); } else { Enable(); } } // Re-initialize the guards. // We are single-threaded now, no need to grab any lock. CHECK_EQ(atomic_load(&pc_array_index, memory_order_relaxed), 0); ReinitializeGuards(); } void CoverageData::BeforeFork() { mu.Lock(); } void CoverageData::AfterFork(int child_pid) { // We are single-threaded so it's OK to release the lock early. mu.Unlock(); if (child_pid == 0) ReInit(); } // Extend coverage PC array to fit additional npcs elements. void CoverageData::Extend(uptr npcs) { if (!common_flags()->coverage_direct) return; SpinMutexLock l(&mu); uptr size = atomic_load(&pc_array_size, memory_order_relaxed); size += npcs * sizeof(uptr); if (coverage_enabled && size > pc_array_mapped_size) { if (pc_fd == kInvalidFd) DirectOpen(); CHECK_NE(pc_fd, kInvalidFd); uptr new_mapped_size = pc_array_mapped_size; while (size > new_mapped_size) new_mapped_size += kPcArrayMmapSize; CHECK_LE(new_mapped_size, sizeof(uptr) * kPcArrayMaxSize); // Extend the file and map the new space at the end of pc_array. uptr res = internal_ftruncate(pc_fd, new_mapped_size); int err; if (internal_iserror(res, &err)) { Printf("failed to extend raw coverage file: %d\n", err); Die(); } uptr next_map_base = ((uptr)pc_array) + pc_array_mapped_size; void *p = MapWritableFileToMemory((void *)next_map_base, new_mapped_size - pc_array_mapped_size, pc_fd, pc_array_mapped_size); CHECK_EQ((uptr)p, next_map_base); pc_array_mapped_size = new_mapped_size; } atomic_store(&pc_array_size, size, memory_order_release); } void CoverageData::InitializeCounters(u8 *counters, uptr n) { if (!counters) return; CHECK_EQ(reinterpret_cast(counters) % 16, 0); n = RoundUpTo(n, 16); // The compiler must ensure that counters is 16-aligned. SpinMutexLock l(&mu); counters_vec.push_back({counters, n}); num_8bit_counters += n; } void CoverageData::UpdateModuleNameVec(uptr caller_pc, uptr range_beg, uptr range_end) { auto sym = Symbolizer::GetOrInit(); if (!sym) return; const char *module_name = sym->GetModuleNameForPc(caller_pc); if (!module_name) return; if (module_name_vec.empty() || module_name_vec.back().copied_module_name != module_name) module_name_vec.push_back({module_name, range_beg, range_end}); else module_name_vec.back().end = range_end; } void CoverageData::InitializeGuards(s32 *guards, uptr n, const char *comp_unit_name, uptr caller_pc) { // The array 'guards' has n+1 elements, we use the element zero // to store 'n'. CHECK_LT(n, 1 << 30); guards[0] = static_cast(n); InitializeGuardArray(guards); SpinMutexLock l(&mu); uptr range_end = atomic_load(&pc_array_index, memory_order_relaxed); uptr range_beg = range_end - n; comp_unit_name_vec.push_back({comp_unit_name, range_beg, range_end}); guard_array_vec.push_back(guards); UpdateModuleNameVec(caller_pc, range_beg, range_end); } static const uptr kBundleCounterBits = 16; // When coverage_order_pcs==true and SANITIZER_WORDSIZE==64 // we insert the global counter into the first 16 bits of the PC. uptr BundlePcAndCounter(uptr pc, uptr counter) { if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs) return pc; static const uptr kMaxCounter = (1 << kBundleCounterBits) - 1; if (counter > kMaxCounter) counter = kMaxCounter; CHECK_EQ(0, pc >> (SANITIZER_WORDSIZE - kBundleCounterBits)); return pc | (counter << (SANITIZER_WORDSIZE - kBundleCounterBits)); } uptr UnbundlePc(uptr bundle) { if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs) return bundle; return (bundle << kBundleCounterBits) >> kBundleCounterBits; } uptr UnbundleCounter(uptr bundle) { if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs) return 0; return bundle >> (SANITIZER_WORDSIZE - kBundleCounterBits); } // If guard is negative, atomically set it to -guard and store the PC in // pc_array. void CoverageData::Add(uptr pc, u32 *guard) { atomic_uint32_t *atomic_guard = reinterpret_cast(guard); s32 guard_value = atomic_load(atomic_guard, memory_order_relaxed); if (guard_value >= 0) return; atomic_store(atomic_guard, -guard_value, memory_order_relaxed); if (!pc_array) return; uptr idx = -guard_value - 1; if (idx >= atomic_load(&pc_array_index, memory_order_acquire)) return; // May happen after fork when pc_array_index becomes 0. CHECK_LT(idx * sizeof(uptr), atomic_load(&pc_array_size, memory_order_acquire)); uptr counter = atomic_fetch_add(&coverage_counter, 1, memory_order_relaxed); pc_array[idx] = BundlePcAndCounter(pc, counter); if (pc_buffer) pc_buffer[counter] = pc; } // Registers a pair caller=>callee. // When a given caller is seen for the first time, the callee_cache is added // to the global array cc_array, callee_cache[0] is set to caller and // callee_cache[1] is set to cache_size. // Then we are trying to add callee to callee_cache [2,cache_size) if it is // not there yet. // If the cache is full we drop the callee (may want to fix this later). void CoverageData::IndirCall(uptr caller, uptr callee, uptr callee_cache[], uptr cache_size) { if (!cc_array) return; atomic_uintptr_t *atomic_callee_cache = reinterpret_cast(callee_cache); uptr zero = 0; if (atomic_compare_exchange_strong(&atomic_callee_cache[0], &zero, caller, memory_order_seq_cst)) { uptr idx = atomic_fetch_add(&cc_array_index, 1, memory_order_relaxed); CHECK_LT(idx * sizeof(uptr), atomic_load(&cc_array_size, memory_order_acquire)); callee_cache[1] = cache_size; cc_array[idx] = callee_cache; } CHECK_EQ(atomic_load(&atomic_callee_cache[0], memory_order_relaxed), caller); for (uptr i = 2; i < cache_size; i++) { uptr was = 0; if (atomic_compare_exchange_strong(&atomic_callee_cache[i], &was, callee, memory_order_seq_cst)) { atomic_fetch_add(&caller_callee_counter, 1, memory_order_relaxed); return; } if (was == callee) // Already have this callee. return; } } uptr CoverageData::GetNumberOf8bitCounters() { return num_8bit_counters; } // Map every 8bit counter to a 8-bit bitset and clear the counter. uptr CoverageData::Update8bitCounterBitsetAndClearCounters(u8 *bitset) { uptr num_new_bits = 0; uptr cur = 0; // For better speed we map 8 counters to 8 bytes of bitset at once. static const uptr kBatchSize = 8; CHECK_EQ(reinterpret_cast(bitset) % kBatchSize, 0); for (uptr i = 0, len = counters_vec.size(); i < len; i++) { u8 *c = counters_vec[i].counters; uptr n = counters_vec[i].n; CHECK_EQ(n % 16, 0); CHECK_EQ(cur % kBatchSize, 0); CHECK_EQ(reinterpret_cast(c) % kBatchSize, 0); if (!bitset) { internal_bzero_aligned16(c, n); cur += n; continue; } for (uptr j = 0; j < n; j += kBatchSize, cur += kBatchSize) { CHECK_LT(cur, num_8bit_counters); u64 *pc64 = reinterpret_cast(c + j); u64 *pb64 = reinterpret_cast(bitset + cur); u64 c64 = *pc64; u64 old_bits_64 = *pb64; u64 new_bits_64 = old_bits_64; if (c64) { *pc64 = 0; for (uptr k = 0; k < kBatchSize; k++) { u64 x = (c64 >> (8 * k)) & 0xff; if (x) { u64 bit = 0; /**/ if (x >= 128) bit = 128; else if (x >= 32) bit = 64; else if (x >= 16) bit = 32; else if (x >= 8) bit = 16; else if (x >= 4) bit = 8; else if (x >= 3) bit = 4; else if (x >= 2) bit = 2; else if (x >= 1) bit = 1; u64 mask = bit << (8 * k); if (!(new_bits_64 & mask)) { num_new_bits++; new_bits_64 |= mask; } } } *pb64 = new_bits_64; } } } CHECK_EQ(cur, num_8bit_counters); return num_new_bits; } uptr *CoverageData::data() { return pc_array; } uptr CoverageData::size() const { return atomic_load(&pc_array_index, memory_order_relaxed); } // Block layout for packed file format: header, followed by module name (no // trailing zero), followed by data blob. struct CovHeader { int pid; unsigned int module_name_length; unsigned int data_length; }; static void CovWritePacked(int pid, const char *module, const void *blob, unsigned int blob_size) { if (cov_fd == kInvalidFd) return; unsigned module_name_length = internal_strlen(module); CovHeader header = {pid, module_name_length, blob_size}; if (cov_max_block_size == 0) { // Writing to a file. Just go ahead. WriteToFile(cov_fd, &header, sizeof(header)); WriteToFile(cov_fd, module, module_name_length); WriteToFile(cov_fd, blob, blob_size); } else { // Writing to a socket. We want to split the data into appropriately sized // blocks. InternalScopedBuffer block(cov_max_block_size); CHECK_EQ((uptr)block.data(), (uptr)(CovHeader *)block.data()); uptr header_size_with_module = sizeof(header) + module_name_length; CHECK_LT(header_size_with_module, cov_max_block_size); unsigned int max_payload_size = cov_max_block_size - header_size_with_module; char *block_pos = block.data(); internal_memcpy(block_pos, &header, sizeof(header)); block_pos += sizeof(header); internal_memcpy(block_pos, module, module_name_length); block_pos += module_name_length; char *block_data_begin = block_pos; const char *blob_pos = (const char *)blob; while (blob_size > 0) { unsigned int payload_size = Min(blob_size, max_payload_size); blob_size -= payload_size; internal_memcpy(block_data_begin, blob_pos, payload_size); blob_pos += payload_size; ((CovHeader *)block.data())->data_length = payload_size; WriteToFile(cov_fd, block.data(), header_size_with_module + payload_size); } } } // If packed = false: .. (name = module name). // If packed = true and name == 0: ... // If packed = true and name != 0: .. (name is // user-supplied). static fd_t CovOpenFile(InternalScopedString *path, bool packed, const char *name, const char *extension = "sancov") { path->clear(); if (!packed) { CHECK(name); path->append("%s/%s.%zd.%s", coverage_dir, name, internal_getpid(), extension); } else { if (!name) path->append("%s/%zd.%s.packed", coverage_dir, internal_getpid(), extension); else path->append("%s/%s.%s.packed", coverage_dir, name, extension); } error_t err; fd_t fd = OpenFile(path->data(), WrOnly, &err); if (fd == kInvalidFd) Report("SanitizerCoverage: failed to open %s for writing (reason: %d)\n", path->data(), err); return fd; } // Dump trace PCs and trace events into two separate files. void CoverageData::DumpTrace() { uptr max_idx = tr_event_pointer - tr_event_array; if (!max_idx) return; auto sym = Symbolizer::GetOrInit(); if (!sym) return; InternalScopedString out(32 << 20); for (uptr i = 0, n = size(); i < n; i++) { const char *module_name = ""; uptr module_address = 0; sym->GetModuleNameAndOffsetForPC(UnbundlePc(pc_array[i]), &module_name, &module_address); out.append("%s 0x%zx\n", module_name, module_address); } InternalScopedString path(kMaxPathLength); fd_t fd = CovOpenFile(&path, false, "trace-points"); if (fd == kInvalidFd) return; WriteToFile(fd, out.data(), out.length()); CloseFile(fd); fd = CovOpenFile(&path, false, "trace-compunits"); if (fd == kInvalidFd) return; out.clear(); for (uptr i = 0; i < comp_unit_name_vec.size(); i++) out.append("%s\n", comp_unit_name_vec[i].copied_module_name); WriteToFile(fd, out.data(), out.length()); CloseFile(fd); fd = CovOpenFile(&path, false, "trace-events"); if (fd == kInvalidFd) return; uptr bytes_to_write = max_idx * sizeof(tr_event_array[0]); u8 *event_bytes = reinterpret_cast(tr_event_array); // The trace file could be huge, and may not be written with a single syscall. while (bytes_to_write) { uptr actually_written; if (WriteToFile(fd, event_bytes, bytes_to_write, &actually_written) && actually_written <= bytes_to_write) { bytes_to_write -= actually_written; event_bytes += actually_written; } else { break; } } CloseFile(fd); VReport(1, " CovDump: Trace: %zd PCs written\n", size()); VReport(1, " CovDump: Trace: %zd Events written\n", max_idx); } // This function dumps the caller=>callee pairs into a file as a sequence of // lines like "module_name offset". void CoverageData::DumpCallerCalleePairs() { uptr max_idx = atomic_load(&cc_array_index, memory_order_relaxed); if (!max_idx) return; auto sym = Symbolizer::GetOrInit(); if (!sym) return; InternalScopedString out(32 << 20); uptr total = 0; for (uptr i = 0; i < max_idx; i++) { uptr *cc_cache = cc_array[i]; CHECK(cc_cache); uptr caller = cc_cache[0]; uptr n_callees = cc_cache[1]; const char *caller_module_name = ""; uptr caller_module_address = 0; sym->GetModuleNameAndOffsetForPC(caller, &caller_module_name, &caller_module_address); for (uptr j = 2; j < n_callees; j++) { uptr callee = cc_cache[j]; if (!callee) break; total++; const char *callee_module_name = ""; uptr callee_module_address = 0; sym->GetModuleNameAndOffsetForPC(callee, &callee_module_name, &callee_module_address); out.append("%s 0x%zx\n%s 0x%zx\n", caller_module_name, caller_module_address, callee_module_name, callee_module_address); } } InternalScopedString path(kMaxPathLength); fd_t fd = CovOpenFile(&path, false, "caller-callee"); if (fd == kInvalidFd) return; WriteToFile(fd, out.data(), out.length()); CloseFile(fd); VReport(1, " CovDump: %zd caller-callee pairs written\n", total); } // Record the current PC into the event buffer. // Every event is a u32 value (index in tr_pc_array_index) so we compute // it once and then cache in the provided 'cache' storage. // // This function will eventually be inlined by the compiler. void CoverageData::TraceBasicBlock(u32 *id) { // Will trap here if // 1. coverage is not enabled at run-time. // 2. The array tr_event_array is full. *tr_event_pointer = *id - 1; tr_event_pointer++; } void CoverageData::DumpCounters() { if (!common_flags()->coverage_counters) return; uptr n = coverage_data.GetNumberOf8bitCounters(); if (!n) return; InternalScopedBuffer bitset(n); coverage_data.Update8bitCounterBitsetAndClearCounters(bitset.data()); InternalScopedString path(kMaxPathLength); for (uptr m = 0; m < module_name_vec.size(); m++) { auto r = module_name_vec[m]; CHECK(r.copied_module_name); CHECK_LE(r.beg, r.end); CHECK_LE(r.end, size()); const char *base_name = StripModuleName(r.copied_module_name); fd_t fd = CovOpenFile(&path, /* packed */ false, base_name, "counters-sancov"); if (fd == kInvalidFd) return; WriteToFile(fd, bitset.data() + r.beg, r.end - r.beg); CloseFile(fd); VReport(1, " CovDump: %zd counters written for '%s'\n", r.end - r.beg, base_name); } } void CoverageData::DumpAsBitSet() { if (!common_flags()->coverage_bitset) return; if (!size()) return; InternalScopedBuffer out(size()); InternalScopedString path(kMaxPathLength); for (uptr m = 0; m < module_name_vec.size(); m++) { uptr n_set_bits = 0; auto r = module_name_vec[m]; CHECK(r.copied_module_name); CHECK_LE(r.beg, r.end); CHECK_LE(r.end, size()); for (uptr i = r.beg; i < r.end; i++) { uptr pc = UnbundlePc(pc_array[i]); out[i] = pc ? '1' : '0'; if (pc) n_set_bits++; } const char *base_name = StripModuleName(r.copied_module_name); fd_t fd = CovOpenFile(&path, /* packed */false, base_name, "bitset-sancov"); if (fd == kInvalidFd) return; WriteToFile(fd, out.data() + r.beg, r.end - r.beg); CloseFile(fd); VReport(1, " CovDump: bitset of %zd bits written for '%s', %zd bits are set\n", r.end - r.beg, base_name, n_set_bits); } } void CoverageData::GetRangeOffsets(const NamedPcRange& r, Symbolizer* sym, InternalMmapVector* offsets) const { offsets->clear(); for (uptr i = 0; i < kNumWordsForMagic; i++) offsets->push_back(0); CHECK(r.copied_module_name); CHECK_LE(r.beg, r.end); CHECK_LE(r.end, size()); for (uptr i = r.beg; i < r.end; i++) { uptr pc = UnbundlePc(pc_array[i]); uptr counter = UnbundleCounter(pc_array[i]); if (!pc) continue; // Not visited. uptr offset = 0; sym->GetModuleNameAndOffsetForPC(pc, nullptr, &offset); offsets->push_back(BundlePcAndCounter(offset, counter)); } CHECK_GE(offsets->size(), kNumWordsForMagic); SortArray(offsets->data(), offsets->size()); for (uptr i = 0; i < offsets->size(); i++) (*offsets)[i] = UnbundlePc((*offsets)[i]); } static void GenerateHtmlReport(const InternalMmapVector &cov_files) { if (!common_flags()->html_cov_report) { return; } char *sancov_path = FindPathToBinary(common_flags()->sancov_path); if (sancov_path == nullptr) { return; } InternalMmapVector sancov_argv(cov_files.size() * 2 + 3); sancov_argv.push_back(sancov_path); sancov_argv.push_back(internal_strdup("-html-report")); auto argv_deleter = at_scope_exit([&] { for (uptr i = 0; i < sancov_argv.size(); ++i) { InternalFree(sancov_argv[i]); } }); for (const auto &cov_file : cov_files) { sancov_argv.push_back(internal_strdup(cov_file)); } { ListOfModules modules; modules.init(); for (const LoadedModule &module : modules) { sancov_argv.push_back(internal_strdup(module.full_name())); } } InternalScopedString report_path(kMaxPathLength); fd_t report_fd = CovOpenFile(&report_path, false /* packed */, GetProcessName(), "html"); int pid = StartSubprocess(sancov_argv[0], sancov_argv.data(), kInvalidFd /* stdin */, report_fd /* std_out */); if (pid > 0) { int result = WaitForProcess(pid); if (result == 0) Printf("coverage report generated to %s\n", report_path.data()); } } void CoverageData::DumpOffsets() { auto sym = Symbolizer::GetOrInit(); if (!common_flags()->coverage_pcs) return; CHECK_NE(sym, nullptr); InternalMmapVector offsets(0); InternalScopedString path(kMaxPathLength); InternalMmapVector cov_files(module_name_vec.size()); auto cov_files_deleter = at_scope_exit([&] { for (uptr i = 0; i < cov_files.size(); ++i) { InternalFree(cov_files[i]); } }); for (uptr m = 0; m < module_name_vec.size(); m++) { auto r = module_name_vec[m]; GetRangeOffsets(r, sym, &offsets); uptr num_offsets = offsets.size() - kNumWordsForMagic; u64 *magic_p = reinterpret_cast(offsets.data()); CHECK_EQ(*magic_p, 0ULL); // FIXME: we may want to write 32-bit offsets even in 64-mode // if all the offsets are small enough. *magic_p = kMagic; const char *module_name = StripModuleName(r.copied_module_name); if (cov_sandboxed) { if (cov_fd != kInvalidFd) { CovWritePacked(internal_getpid(), module_name, offsets.data(), offsets.size() * sizeof(offsets[0])); VReport(1, " CovDump: %zd PCs written to packed file\n", num_offsets); } } else { // One file per module per process. fd_t fd = CovOpenFile(&path, false /* packed */, module_name); if (fd == kInvalidFd) continue; WriteToFile(fd, offsets.data(), offsets.size() * sizeof(offsets[0])); CloseFile(fd); cov_files.push_back(internal_strdup(path.data())); VReport(1, " CovDump: %s: %zd PCs written\n", path.data(), num_offsets); } } if (cov_fd != kInvalidFd) CloseFile(cov_fd); GenerateHtmlReport(cov_files); } void CoverageData::DumpAll() { if (!coverage_enabled || common_flags()->coverage_direct) return; if (atomic_fetch_add(&dump_once_guard, 1, memory_order_relaxed)) return; DumpAsBitSet(); DumpCounters(); DumpTrace(); DumpOffsets(); DumpCallerCalleePairs(); } void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args) { if (!args) return; if (!coverage_enabled) return; cov_sandboxed = args->coverage_sandboxed; if (!cov_sandboxed) return; cov_max_block_size = args->coverage_max_block_size; if (args->coverage_fd >= 0) { cov_fd = (fd_t)args->coverage_fd; } else { InternalScopedString path(kMaxPathLength); // Pre-open the file now. The sandbox won't allow us to do it later. cov_fd = CovOpenFile(&path, true /* packed */, nullptr); } } fd_t MaybeOpenCovFile(const char *name) { CHECK(name); if (!coverage_enabled) return kInvalidFd; InternalScopedString path(kMaxPathLength); return CovOpenFile(&path, true /* packed */, name); } void CovBeforeFork() { coverage_data.BeforeFork(); } void CovAfterFork(int child_pid) { coverage_data.AfterFork(child_pid); } static void MaybeDumpCoverage() { if (common_flags()->coverage) __sanitizer_cov_dump(); } void InitializeCoverage(bool enabled, const char *dir) { if (coverage_enabled) return; // May happen if two sanitizer enable coverage in the same process. coverage_enabled = enabled; coverage_dir = dir; coverage_data.Init(); if (enabled) coverage_data.Enable(); if (!common_flags()->coverage_direct) Atexit(__sanitizer_cov_dump); AddDieCallback(MaybeDumpCoverage); } void ReInitializeCoverage(bool enabled, const char *dir) { coverage_enabled = enabled; coverage_dir = dir; coverage_data.ReInit(); } void CoverageUpdateMapping() { if (coverage_enabled) CovUpdateMapping(coverage_dir); } } // namespace __sanitizer extern "C" { SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov(u32 *guard) { coverage_data.Add(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()), guard); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_with_check(u32 *guard) { atomic_uint32_t *atomic_guard = reinterpret_cast(guard); if (static_cast( __sanitizer::atomic_load(atomic_guard, memory_order_relaxed)) < 0) __sanitizer_cov(guard); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_indir_call16(uptr callee, uptr callee_cache16[]) { coverage_data.IndirCall(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()), callee, callee_cache16, 16); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_init() { coverage_enabled = true; coverage_dir = common_flags()->coverage_dir; coverage_data.Init(); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() { coverage_data.DumpAll(); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_module_init(s32 *guards, uptr npcs, u8 *counters, const char *comp_unit_name) { coverage_data.InitializeGuards(guards, npcs, comp_unit_name, GET_CALLER_PC()); coverage_data.InitializeCounters(counters, npcs); if (!common_flags()->coverage_direct) return; if (SANITIZER_ANDROID && coverage_enabled) { // dlopen/dlclose interceptors do not work on Android, so we rely on // Extend() calls to update .sancov.map. CovUpdateMapping(coverage_dir, GET_CALLER_PC()); } coverage_data.Extend(npcs); } SANITIZER_INTERFACE_ATTRIBUTE sptr __sanitizer_maybe_open_cov_file(const char *name) { return (sptr)MaybeOpenCovFile(name); } SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_get_total_unique_coverage() { return atomic_load(&coverage_counter, memory_order_relaxed); } SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_get_total_unique_caller_callee_pairs() { return atomic_load(&caller_callee_counter, memory_order_relaxed); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_trace_func_enter(u32 *id) { __sanitizer_cov_with_check(id); coverage_data.TraceBasicBlock(id); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_trace_basic_block(u32 *id) { __sanitizer_cov_with_check(id); coverage_data.TraceBasicBlock(id); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_reset_coverage() { ResetGlobalCounters(); coverage_data.ReinitializeGuards(); internal_bzero_aligned16( coverage_data.data(), RoundUpTo(coverage_data.size() * sizeof(coverage_data.data()[0]), 16)); } SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_get_coverage_guards(uptr **data) { *data = coverage_data.data(); return coverage_data.size(); } SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_get_coverage_pc_buffer(uptr **data) { *data = coverage_data.buffer(); return __sanitizer_get_total_unique_coverage(); } SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_get_number_of_counters() { return coverage_data.GetNumberOf8bitCounters(); } SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_update_counter_bitset_and_clear_counters(u8 *bitset) { return coverage_data.Update8bitCounterBitsetAndClearCounters(bitset); } // Default empty implementations (weak). Users should redefine them. SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE void __sanitizer_cov_trace_cmp() {} SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE void __sanitizer_cov_trace_switch() {} } // extern "C"