//===-- sanitizer_allocator.cc --------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries. // This allocator is used inside run-times. //===----------------------------------------------------------------------===// #include "sanitizer_allocator.h" #include "sanitizer_allocator_checks.h" #include "sanitizer_allocator_internal.h" #include "sanitizer_atomic.h" #include "sanitizer_common.h" namespace __sanitizer { // Default allocator names. const char *PrimaryAllocatorName = "SizeClassAllocator"; const char *SecondaryAllocatorName = "LargeMmapAllocator"; // ThreadSanitizer for Go uses libc malloc/free. #if SANITIZER_GO || defined(SANITIZER_USE_MALLOC) # if SANITIZER_LINUX && !SANITIZER_ANDROID extern "C" void *__libc_malloc(uptr size); # if !SANITIZER_GO extern "C" void *__libc_memalign(uptr alignment, uptr size); # endif extern "C" void *__libc_realloc(void *ptr, uptr size); extern "C" void __libc_free(void *ptr); # else # include # define __libc_malloc malloc # if !SANITIZER_GO static void *__libc_memalign(uptr alignment, uptr size) { void *p; uptr error = posix_memalign(&p, alignment, size); if (error) return nullptr; return p; } # endif # define __libc_realloc realloc # define __libc_free free # endif static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache, uptr alignment) { (void)cache; #if !SANITIZER_GO if (alignment == 0) return __libc_malloc(size); else return __libc_memalign(alignment, size); #else // Windows does not provide __libc_memalign/posix_memalign. It provides // __aligned_malloc, but the allocated blocks can't be passed to free, // they need to be passed to __aligned_free. InternalAlloc interface does // not account for such requirement. Alignemnt does not seem to be used // anywhere in runtime, so just call __libc_malloc for now. DCHECK_EQ(alignment, 0); return __libc_malloc(size); #endif } static void *RawInternalRealloc(void *ptr, uptr size, InternalAllocatorCache *cache) { (void)cache; return __libc_realloc(ptr, size); } static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) { (void)cache; __libc_free(ptr); } InternalAllocator *internal_allocator() { return 0; } #else // SANITIZER_GO || defined(SANITIZER_USE_MALLOC) static ALIGNED(64) char internal_alloc_placeholder[sizeof(InternalAllocator)]; static atomic_uint8_t internal_allocator_initialized; static StaticSpinMutex internal_alloc_init_mu; static InternalAllocatorCache internal_allocator_cache; static StaticSpinMutex internal_allocator_cache_mu; InternalAllocator *internal_allocator() { InternalAllocator *internal_allocator_instance = reinterpret_cast(&internal_alloc_placeholder); if (atomic_load(&internal_allocator_initialized, memory_order_acquire) == 0) { SpinMutexLock l(&internal_alloc_init_mu); if (atomic_load(&internal_allocator_initialized, memory_order_relaxed) == 0) { internal_allocator_instance->Init(kReleaseToOSIntervalNever); atomic_store(&internal_allocator_initialized, 1, memory_order_release); } } return internal_allocator_instance; } static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache, uptr alignment) { if (alignment == 0) alignment = 8; if (cache == 0) { SpinMutexLock l(&internal_allocator_cache_mu); return internal_allocator()->Allocate(&internal_allocator_cache, size, alignment); } return internal_allocator()->Allocate(cache, size, alignment); } static void *RawInternalRealloc(void *ptr, uptr size, InternalAllocatorCache *cache) { uptr alignment = 8; if (cache == 0) { SpinMutexLock l(&internal_allocator_cache_mu); return internal_allocator()->Reallocate(&internal_allocator_cache, ptr, size, alignment); } return internal_allocator()->Reallocate(cache, ptr, size, alignment); } static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) { if (!cache) { SpinMutexLock l(&internal_allocator_cache_mu); return internal_allocator()->Deallocate(&internal_allocator_cache, ptr); } internal_allocator()->Deallocate(cache, ptr); } #endif // SANITIZER_GO || defined(SANITIZER_USE_MALLOC) const u64 kBlockMagic = 0x6A6CB03ABCEBC041ull; static void NORETURN ReportInternalAllocatorOutOfMemory(uptr requested_size) { SetAllocatorOutOfMemory(); Report("FATAL: %s: internal allocator is out of memory trying to allocate " "0x%zx bytes\n", SanitizerToolName, requested_size); Die(); } void *InternalAlloc(uptr size, InternalAllocatorCache *cache, uptr alignment) { if (size + sizeof(u64) < size) return nullptr; void *p = RawInternalAlloc(size + sizeof(u64), cache, alignment); if (UNLIKELY(!p)) ReportInternalAllocatorOutOfMemory(size + sizeof(u64)); ((u64*)p)[0] = kBlockMagic; return (char*)p + sizeof(u64); } void *InternalRealloc(void *addr, uptr size, InternalAllocatorCache *cache) { if (!addr) return InternalAlloc(size, cache); if (size + sizeof(u64) < size) return nullptr; addr = (char*)addr - sizeof(u64); size = size + sizeof(u64); CHECK_EQ(kBlockMagic, ((u64*)addr)[0]); void *p = RawInternalRealloc(addr, size, cache); if (UNLIKELY(!p)) ReportInternalAllocatorOutOfMemory(size); return (char*)p + sizeof(u64); } void *InternalCalloc(uptr count, uptr size, InternalAllocatorCache *cache) { if (UNLIKELY(CheckForCallocOverflow(count, size))) { Report("FATAL: %s: calloc parameters overflow: count * size (%zd * %zd) " "cannot be represented in type size_t\n", SanitizerToolName, count, size); Die(); } void *p = InternalAlloc(count * size, cache); if (LIKELY(p)) internal_memset(p, 0, count * size); return p; } void InternalFree(void *addr, InternalAllocatorCache *cache) { if (!addr) return; addr = (char*)addr - sizeof(u64); CHECK_EQ(kBlockMagic, ((u64*)addr)[0]); ((u64*)addr)[0] = 0; RawInternalFree(addr, cache); } // LowLevelAllocator constexpr uptr kLowLevelAllocatorDefaultAlignment = 8; static uptr low_level_alloc_min_alignment = kLowLevelAllocatorDefaultAlignment; static LowLevelAllocateCallback low_level_alloc_callback; void *LowLevelAllocator::Allocate(uptr size) { // Align allocation size. size = RoundUpTo(size, low_level_alloc_min_alignment); if (allocated_end_ - allocated_current_ < (sptr)size) { uptr size_to_allocate = Max(size, GetPageSizeCached()); allocated_current_ = (char*)MmapOrDie(size_to_allocate, __func__); allocated_end_ = allocated_current_ + size_to_allocate; if (low_level_alloc_callback) { low_level_alloc_callback((uptr)allocated_current_, size_to_allocate); } } CHECK(allocated_end_ - allocated_current_ >= (sptr)size); void *res = allocated_current_; allocated_current_ += size; return res; } void SetLowLevelAllocateMinAlignment(uptr alignment) { CHECK(IsPowerOfTwo(alignment)); low_level_alloc_min_alignment = Max(alignment, low_level_alloc_min_alignment); } void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback) { low_level_alloc_callback = callback; } // Allocator's OOM and other errors handling support. static atomic_uint8_t allocator_out_of_memory = {0}; static atomic_uint8_t allocator_may_return_null = {0}; bool IsAllocatorOutOfMemory() { return atomic_load_relaxed(&allocator_out_of_memory); } void SetAllocatorOutOfMemory() { atomic_store_relaxed(&allocator_out_of_memory, 1); } bool AllocatorMayReturnNull() { return atomic_load(&allocator_may_return_null, memory_order_relaxed); } void SetAllocatorMayReturnNull(bool may_return_null) { atomic_store(&allocator_may_return_null, may_return_null, memory_order_relaxed); } void PrintHintAllocatorCannotReturnNull() { Report("HINT: if you don't care about these errors you may set " "allocator_may_return_null=1\n"); } } // namespace __sanitizer