//===-- safestack.cc ------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the runtime support for the safe stack protection // mechanism. The runtime manages allocation/deallocation of the unsafe stack // for the main thread, as well as all pthreads that are created/destroyed // during program execution. // //===----------------------------------------------------------------------===// #include #include #include #include #include #include #include #if !defined(__NetBSD__) #include #endif #include "interception/interception.h" #include "sanitizer_common/sanitizer_common.h" // TODO: The runtime library does not currently protect the safe stack beyond // relying on the system-enforced ASLR. The protection of the (safe) stack can // be provided by three alternative features: // // 1) Protection via hardware segmentation on x86-32 and some x86-64 // architectures: the (safe) stack segment (implicitly accessed via the %ss // segment register) can be separated from the data segment (implicitly // accessed via the %ds segment register). Dereferencing a pointer to the safe // segment would result in a segmentation fault. // // 2) Protection via software fault isolation: memory writes that are not meant // to access the safe stack can be prevented from doing so through runtime // instrumentation. One way to do it is to allocate the safe stack(s) in the // upper half of the userspace and bitmask the corresponding upper bit of the // memory addresses of memory writes that are not meant to access the safe // stack. // // 3) Protection via information hiding on 64 bit architectures: the location // of the safe stack(s) can be randomized through secure mechanisms, and the // leakage of the stack pointer can be prevented. Currently, libc can leak the // stack pointer in several ways (e.g. in longjmp, signal handling, user-level // context switching related functions, etc.). These can be fixed in libc and // in other low-level libraries, by either eliminating the escaping/dumping of // the stack pointer (i.e., %rsp) when that's possible, or by using // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret // we control and protect better, as is already done for setjmp in glibc.) // Furthermore, a static machine code level verifier can be ran after code // generation to make sure that the stack pointer is never written to memory, // or if it is, its written on the safe stack. // // Finally, while the Unsafe Stack pointer is currently stored in a thread // local variable, with libc support it could be stored in the TCB (thread // control block) as well, eliminating another level of indirection and making // such accesses faster. Alternatively, dedicating a separate register for // storing it would also be possible. /// Minimum stack alignment for the unsafe stack. const unsigned kStackAlign = 16; /// Default size of the unsafe stack. This value is only used if the stack /// size rlimit is set to infinity. const unsigned kDefaultUnsafeStackSize = 0x2800000; /// Runtime page size obtained through sysconf static unsigned pageSize; // TODO: To make accessing the unsafe stack pointer faster, we plan to // eventually store it directly in the thread control block data structure on // platforms where this structure is pointed to by %fs or %gs. This is exactly // the same mechanism as currently being used by the traditional stack // protector pass to store the stack guard (see getStackCookieLocation() // function above). Doing so requires changing the tcbhead_t struct in glibc // on Linux and tcb struct in libc on FreeBSD. // // For now, store it in a thread-local variable. extern "C" { __attribute__((visibility( "default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr; } // Per-thread unsafe stack information. It's not frequently accessed, so there // it can be kept out of the tcb in normal thread-local variables. static __thread void *unsafe_stack_start = nullptr; static __thread size_t unsafe_stack_size = 0; static __thread size_t unsafe_stack_guard = 0; using namespace __sanitizer; static inline void *unsafe_stack_alloc(size_t size, size_t guard) { CHECK_GE(size + guard, size); void *addr = MmapOrDie(size + guard, "unsafe_stack_alloc"); MprotectNoAccess((uptr)addr, (uptr)guard); return (char *)addr + guard; } static inline void unsafe_stack_setup(void *start, size_t size, size_t guard) { CHECK_GE((char *)start + size, (char *)start); CHECK_GE((char *)start + guard, (char *)start); void *stack_ptr = (char *)start + size; CHECK_EQ((((size_t)stack_ptr) & (kStackAlign - 1)), 0); __safestack_unsafe_stack_ptr = stack_ptr; unsafe_stack_start = start; unsafe_stack_size = size; unsafe_stack_guard = guard; } static void unsafe_stack_free() { if (unsafe_stack_start) { UnmapOrDie((char *)unsafe_stack_start - unsafe_stack_guard, unsafe_stack_size + unsafe_stack_guard); } unsafe_stack_start = nullptr; } /// Thread data for the cleanup handler static pthread_key_t thread_cleanup_key; /// Safe stack per-thread information passed to the thread_start function struct tinfo { void *(*start_routine)(void *); void *start_routine_arg; void *unsafe_stack_start; size_t unsafe_stack_size; size_t unsafe_stack_guard; }; /// Wrap the thread function in order to deallocate the unsafe stack when the /// thread terminates by returning from its main function. static void *thread_start(void *arg) { struct tinfo *tinfo = (struct tinfo *)arg; void *(*start_routine)(void *) = tinfo->start_routine; void *start_routine_arg = tinfo->start_routine_arg; // Setup the unsafe stack; this will destroy tinfo content unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size, tinfo->unsafe_stack_guard); // Make sure out thread-specific destructor will be called // FIXME: we can do this only any other specific key is set by // intercepting the pthread_setspecific function itself pthread_setspecific(thread_cleanup_key, (void *)1); return start_routine(start_routine_arg); } /// Thread-specific data destructor static void thread_cleanup_handler(void *_iter) { // We want to free the unsafe stack only after all other destructors // have already run. We force this function to be called multiple times. // User destructors that might run more then PTHREAD_DESTRUCTOR_ITERATIONS-1 // times might still end up executing after the unsafe stack is deallocated. size_t iter = (size_t)_iter; if (iter < PTHREAD_DESTRUCTOR_ITERATIONS) { pthread_setspecific(thread_cleanup_key, (void *)(iter + 1)); } else { // This is the last iteration unsafe_stack_free(); } } static void EnsureInterceptorsInitialized(); /// Intercept thread creation operation to allocate and setup the unsafe stack INTERCEPTOR(int, pthread_create, pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void*), void *arg) { EnsureInterceptorsInitialized(); size_t size = 0; size_t guard = 0; if (attr) { pthread_attr_getstacksize(attr, &size); pthread_attr_getguardsize(attr, &guard); } else { // get pthread default stack size pthread_attr_t tmpattr; pthread_attr_init(&tmpattr); pthread_attr_getstacksize(&tmpattr, &size); pthread_attr_getguardsize(&tmpattr, &guard); pthread_attr_destroy(&tmpattr); } CHECK_NE(size, 0); CHECK_EQ((size & (kStackAlign - 1)), 0); CHECK_EQ((guard & (pageSize - 1)), 0); void *addr = unsafe_stack_alloc(size, guard); struct tinfo *tinfo = (struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo)); tinfo->start_routine = start_routine; tinfo->start_routine_arg = arg; tinfo->unsafe_stack_start = addr; tinfo->unsafe_stack_size = size; tinfo->unsafe_stack_guard = guard; return REAL(pthread_create)(thread, attr, thread_start, tinfo); } static BlockingMutex interceptor_init_lock(LINKER_INITIALIZED); static bool interceptors_inited = false; static void EnsureInterceptorsInitialized() { BlockingMutexLock lock(&interceptor_init_lock); if (interceptors_inited) return; // Initialize pthread interceptors for thread allocation INTERCEPT_FUNCTION(pthread_create); interceptors_inited = true; } extern "C" __attribute__((visibility("default"))) #if !SANITIZER_CAN_USE_PREINIT_ARRAY // On ELF platforms, the constructor is invoked using .preinit_array (see below) __attribute__((constructor(0))) #endif void __safestack_init() { // Determine the stack size for the main thread. size_t size = kDefaultUnsafeStackSize; size_t guard = 4096; struct rlimit limit; if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY) size = limit.rlim_cur; // Allocate unsafe stack for main thread void *addr = unsafe_stack_alloc(size, guard); unsafe_stack_setup(addr, size, guard); pageSize = sysconf(_SC_PAGESIZE); // Setup the cleanup handler pthread_key_create(&thread_cleanup_key, thread_cleanup_handler); } #if SANITIZER_CAN_USE_PREINIT_ARRAY // On ELF platforms, run safestack initialization before any other constructors. // On other platforms we use the constructor attribute to arrange to run our // initialization early. extern "C" { __attribute__((section(".preinit_array"), used)) void (*__safestack_preinit)(void) = __safestack_init; } #endif extern "C" __attribute__((visibility("default"))) void *__get_unsafe_stack_bottom() { return unsafe_stack_start; } extern "C" __attribute__((visibility("default"))) void *__get_unsafe_stack_top() { return (char*)unsafe_stack_start + unsafe_stack_size; } extern "C" __attribute__((visibility("default"))) void *__get_unsafe_stack_start() { return unsafe_stack_start; } extern "C" __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() { return __safestack_unsafe_stack_ptr; }