//===- FuzzerTracePC.cpp - PC tracing--------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Trace PCs. // This module implements __sanitizer_cov_trace_pc_guard[_init], // the callback required for -fsanitize-coverage=trace-pc-guard instrumentation. // //===----------------------------------------------------------------------===// #include "FuzzerTracePC.h" #include "FuzzerCorpus.h" #include "FuzzerDefs.h" #include "FuzzerDictionary.h" #include "FuzzerExtFunctions.h" #include "FuzzerIO.h" #include "FuzzerUtil.h" #include "FuzzerValueBitMap.h" #include // The coverage counters and PCs. // These are declared as global variables named "__sancov_*" to simplify // experiments with inlined instrumentation. alignas(64) ATTRIBUTE_INTERFACE uint8_t __sancov_trace_pc_guard_8bit_counters[fuzzer::TracePC::kNumPCs]; ATTRIBUTE_INTERFACE uintptr_t __sancov_trace_pc_pcs[fuzzer::TracePC::kNumPCs]; // Used by -fsanitize-coverage=stack-depth to track stack depth ATTRIBUTE_INTERFACE __attribute__((tls_model("initial-exec"))) thread_local uintptr_t __sancov_lowest_stack; namespace fuzzer { TracePC TPC; uint8_t *TracePC::Counters() const { return __sancov_trace_pc_guard_8bit_counters; } uintptr_t *TracePC::PCs() const { return __sancov_trace_pc_pcs; } size_t TracePC::GetTotalPCCoverage() { if (ObservedPCs.size()) return ObservedPCs.size(); size_t Res = 0; for (size_t i = 1, N = GetNumPCs(); i < N; i++) if (PCs()[i]) Res++; return Res; } template void TracePC::IterateInline8bitCounters(CallBack CB) const { if (NumInline8bitCounters && NumInline8bitCounters == NumPCsInPCTables) { size_t CounterIdx = 0; for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) { uint8_t *Beg = ModuleCounters[i].Start; size_t Size = ModuleCounters[i].Stop - Beg; assert(Size == (size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start)); for (size_t j = 0; j < Size; j++, CounterIdx++) CB(i, j, CounterIdx); } } } // Initializes unstable counters by copying Inline8bitCounters to unstable // counters. void TracePC::InitializeUnstableCounters() { IterateInline8bitCounters([&](int i, int j, int UnstableIdx) { UnstableCounters[UnstableIdx].Counter = ModuleCounters[i].Start[j]; }); } // Compares the current counters with counters from previous runs // and records differences as unstable edges. void TracePC::UpdateUnstableCounters(int UnstableMode) { IterateInline8bitCounters([&](int i, int j, int UnstableIdx) { if (ModuleCounters[i].Start[j] != UnstableCounters[UnstableIdx].Counter) UnstableCounters[UnstableIdx].IsUnstable = true; if (UnstableMode && ModuleCounters[i].Start[j] < UnstableCounters[UnstableIdx].Counter) UnstableCounters[UnstableIdx].Counter = ModuleCounters[i].Start[j]; }); } // Moves the minimum hit counts to ModuleCounters. void TracePC::ApplyUnstableCounters() { IterateInline8bitCounters([&](int i, int j, int UnstableIdx) { ModuleCounters[i].Start[j] = UnstableCounters[UnstableIdx].Counter; }); } void TracePC::HandleInline8bitCountersInit(uint8_t *Start, uint8_t *Stop) { if (Start == Stop) return; if (NumModulesWithInline8bitCounters && ModuleCounters[NumModulesWithInline8bitCounters-1].Start == Start) return; assert(NumModulesWithInline8bitCounters < sizeof(ModuleCounters) / sizeof(ModuleCounters[0])); ModuleCounters[NumModulesWithInline8bitCounters++] = {Start, Stop}; NumInline8bitCounters += Stop - Start; } void TracePC::HandlePCsInit(const uintptr_t *Start, const uintptr_t *Stop) { const PCTableEntry *B = reinterpret_cast(Start); const PCTableEntry *E = reinterpret_cast(Stop); if (NumPCTables && ModulePCTable[NumPCTables - 1].Start == B) return; assert(NumPCTables < sizeof(ModulePCTable) / sizeof(ModulePCTable[0])); ModulePCTable[NumPCTables++] = {B, E}; NumPCsInPCTables += E - B; } void TracePC::HandleInit(uint32_t *Start, uint32_t *Stop) { if (Start == Stop || *Start) return; assert(NumModules < sizeof(Modules) / sizeof(Modules[0])); for (uint32_t *P = Start; P < Stop; P++) { NumGuards++; if (NumGuards == kNumPCs) { RawPrint( "WARNING: The binary has too many instrumented PCs.\n" " You may want to reduce the size of the binary\n" " for more efficient fuzzing and precise coverage data\n"); } *P = NumGuards % kNumPCs; } Modules[NumModules].Start = Start; Modules[NumModules].Stop = Stop; NumModules++; } void TracePC::PrintModuleInfo() { if (NumGuards) { Printf("INFO: Loaded %zd modules (%zd guards): ", NumModules, NumGuards); for (size_t i = 0; i < NumModules; i++) Printf("%zd [%p, %p), ", Modules[i].Stop - Modules[i].Start, Modules[i].Start, Modules[i].Stop); Printf("\n"); } if (NumModulesWithInline8bitCounters) { Printf("INFO: Loaded %zd modules (%zd inline 8-bit counters): ", NumModulesWithInline8bitCounters, NumInline8bitCounters); for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) Printf("%zd [%p, %p), ", ModuleCounters[i].Stop - ModuleCounters[i].Start, ModuleCounters[i].Start, ModuleCounters[i].Stop); Printf("\n"); } if (NumPCTables) { Printf("INFO: Loaded %zd PC tables (%zd PCs): ", NumPCTables, NumPCsInPCTables); for (size_t i = 0; i < NumPCTables; i++) { Printf("%zd [%p,%p), ", ModulePCTable[i].Stop - ModulePCTable[i].Start, ModulePCTable[i].Start, ModulePCTable[i].Stop); } Printf("\n"); if ((NumGuards && NumGuards != NumPCsInPCTables) || (NumInline8bitCounters && NumInline8bitCounters != NumPCsInPCTables)) { Printf("ERROR: The size of coverage PC tables does not match the\n" "number of instrumented PCs. This might be a compiler bug,\n" "please contact the libFuzzer developers.\n" "Also check https://bugs.llvm.org/show_bug.cgi?id=34636\n" "for possible workarounds (tl;dr: don't use the old GNU ld)\n"); _Exit(1); } } if (size_t NumExtraCounters = ExtraCountersEnd() - ExtraCountersBegin()) Printf("INFO: %zd Extra Counters\n", NumExtraCounters); } ATTRIBUTE_NO_SANITIZE_ALL void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) { const uintptr_t kBits = 12; const uintptr_t kMask = (1 << kBits) - 1; uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits); ValueProfileMap.AddValueModPrime(Idx); } void TracePC::UpdateObservedPCs() { Vector CoveredFuncs; auto ObservePC = [&](uintptr_t PC) { if (ObservedPCs.insert(PC).second && DoPrintNewPCs) { PrintPC("\tNEW_PC: %p %F %L", "\tNEW_PC: %p", PC + 1); Printf("\n"); } }; auto Observe = [&](const PCTableEntry &TE) { if (TE.PCFlags & 1) if (++ObservedFuncs[TE.PC] == 1 && NumPrintNewFuncs) CoveredFuncs.push_back(TE.PC); ObservePC(TE.PC); }; if (NumPCsInPCTables) { if (NumInline8bitCounters == NumPCsInPCTables) { IterateInline8bitCounters([&](int i, int j, int CounterIdx) { if (ModuleCounters[i].Start[j]) Observe(ModulePCTable[i].Start[j]); }); } else if (NumGuards == NumPCsInPCTables) { size_t GuardIdx = 1; for (size_t i = 0; i < NumModules; i++) { uint32_t *Beg = Modules[i].Start; size_t Size = Modules[i].Stop - Beg; assert(Size == (size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start)); for (size_t j = 0; j < Size; j++, GuardIdx++) if (Counters()[GuardIdx]) Observe(ModulePCTable[i].Start[j]); } } } for (size_t i = 0, N = Min(CoveredFuncs.size(), NumPrintNewFuncs); i < N; i++) { Printf("\tNEW_FUNC[%zd/%zd]: ", i + 1, CoveredFuncs.size()); PrintPC("%p %F %L", "%p", CoveredFuncs[i] + 1); Printf("\n"); } } inline ALWAYS_INLINE uintptr_t GetPreviousInstructionPc(uintptr_t PC) { // TODO: this implementation is x86 only. // see sanitizer_common GetPreviousInstructionPc for full implementation. return PC - 1; } inline ALWAYS_INLINE uintptr_t GetNextInstructionPc(uintptr_t PC) { // TODO: this implementation is x86 only. // see sanitizer_common GetPreviousInstructionPc for full implementation. return PC + 1; } static std::string GetModuleName(uintptr_t PC) { char ModulePathRaw[4096] = ""; // What's PATH_MAX in portable C++? void *OffsetRaw = nullptr; if (!EF->__sanitizer_get_module_and_offset_for_pc( reinterpret_cast(PC), ModulePathRaw, sizeof(ModulePathRaw), &OffsetRaw)) return ""; return ModulePathRaw; } template void TracePC::IterateCoveredFunctions(CallBack CB) { for (size_t i = 0; i < NumPCTables; i++) { auto &M = ModulePCTable[i]; assert(M.Start < M.Stop); auto ModuleName = GetModuleName(M.Start->PC); for (auto NextFE = M.Start; NextFE < M.Stop; ) { auto FE = NextFE; assert((FE->PCFlags & 1) && "Not a function entry point"); do { NextFE++; } while (NextFE < M.Stop && !(NextFE->PCFlags & 1)); if (ObservedFuncs.count(FE->PC)) CB(FE, NextFE, ObservedFuncs[FE->PC]); } } } void TracePC::SetFocusFunction(const std::string &FuncName) { // This function should be called once. assert(FocusFunction.first > NumModulesWithInline8bitCounters); if (FuncName.empty()) return; for (size_t M = 0; M < NumModulesWithInline8bitCounters; M++) { auto &PCTE = ModulePCTable[M]; size_t N = PCTE.Stop - PCTE.Start; for (size_t I = 0; I < N; I++) { if (!(PCTE.Start[I].PCFlags & 1)) continue; // not a function entry. auto Name = DescribePC("%F", GetNextInstructionPc(PCTE.Start[I].PC)); if (Name[0] == 'i' && Name[1] == 'n' && Name[2] == ' ') Name = Name.substr(3, std::string::npos); if (FuncName != Name) continue; Printf("INFO: Focus function is set to '%s'\n", Name.c_str()); FocusFunction = {M, I}; return; } } } bool TracePC::ObservedFocusFunction() { size_t I = FocusFunction.first; size_t J = FocusFunction.second; if (I >= NumModulesWithInline8bitCounters) return false; auto &MC = ModuleCounters[I]; size_t Size = MC.Stop - MC.Start; if (J >= Size) return false; return MC.Start[J] != 0; } void TracePC::PrintCoverage() { if (!EF->__sanitizer_symbolize_pc || !EF->__sanitizer_get_module_and_offset_for_pc) { Printf("INFO: __sanitizer_symbolize_pc or " "__sanitizer_get_module_and_offset_for_pc is not available," " not printing coverage\n"); return; } Printf("COVERAGE:\n"); auto CoveredFunctionCallback = [&](const PCTableEntry *First, const PCTableEntry *Last, uintptr_t Counter) { assert(First < Last); auto VisualizePC = GetNextInstructionPc(First->PC); std::string FileStr = DescribePC("%s", VisualizePC); if (!IsInterestingCoverageFile(FileStr)) return; std::string FunctionStr = DescribePC("%F", VisualizePC); if (FunctionStr.find("in ") == 0) FunctionStr = FunctionStr.substr(3); std::string LineStr = DescribePC("%l", VisualizePC); size_t Line = std::stoul(LineStr); size_t NumEdges = Last - First; Vector UncoveredPCs; for (auto TE = First; TE < Last; TE++) if (!ObservedPCs.count(TE->PC)) UncoveredPCs.push_back(TE->PC); Printf("COVERED_FUNC: hits: %zd", Counter); Printf(" edges: %zd/%zd", NumEdges - UncoveredPCs.size(), NumEdges); Printf(" %s %s:%zd\n", FunctionStr.c_str(), FileStr.c_str(), Line); for (auto PC: UncoveredPCs) Printf(" UNCOVERED_PC: %s\n", DescribePC("%s:%l", GetNextInstructionPc(PC)).c_str()); }; IterateCoveredFunctions(CoveredFunctionCallback); } void TracePC::DumpCoverage() { if (EF->__sanitizer_dump_coverage) { Vector PCsCopy(GetNumPCs()); for (size_t i = 0; i < GetNumPCs(); i++) PCsCopy[i] = PCs()[i] ? GetPreviousInstructionPc(PCs()[i]) : 0; EF->__sanitizer_dump_coverage(PCsCopy.data(), PCsCopy.size()); } } void TracePC::PrintUnstableStats() { size_t count = 0; for (size_t i = 0; i < NumInline8bitCounters; i++) if (UnstableCounters[i].IsUnstable) count++; Printf("stat::stability_rate: %.2f\n", 100 - static_cast(count * 100) / NumInline8bitCounters); } // Value profile. // We keep track of various values that affect control flow. // These values are inserted into a bit-set-based hash map. // Every new bit in the map is treated as a new coverage. // // For memcmp/strcmp/etc the interesting value is the length of the common // prefix of the parameters. // For cmp instructions the interesting value is a XOR of the parameters. // The interesting value is mixed up with the PC and is then added to the map. ATTRIBUTE_NO_SANITIZE_ALL void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2, size_t n, bool StopAtZero) { if (!n) return; size_t Len = std::min(n, Word::GetMaxSize()); const uint8_t *A1 = reinterpret_cast(s1); const uint8_t *A2 = reinterpret_cast(s2); uint8_t B1[Word::kMaxSize]; uint8_t B2[Word::kMaxSize]; // Copy the data into locals in this non-msan-instrumented function // to avoid msan complaining further. size_t Hash = 0; // Compute some simple hash of both strings. for (size_t i = 0; i < Len; i++) { B1[i] = A1[i]; B2[i] = A2[i]; size_t T = B1[i]; Hash ^= (T << 8) | B2[i]; } size_t I = 0; for (; I < Len; I++) if (B1[I] != B2[I] || (StopAtZero && B1[I] == 0)) break; size_t PC = reinterpret_cast(caller_pc); size_t Idx = (PC & 4095) | (I << 12); ValueProfileMap.AddValue(Idx); TORCW.Insert(Idx ^ Hash, Word(B1, Len), Word(B2, Len)); } template ATTRIBUTE_TARGET_POPCNT ALWAYS_INLINE ATTRIBUTE_NO_SANITIZE_ALL void TracePC::HandleCmp(uintptr_t PC, T Arg1, T Arg2) { uint64_t ArgXor = Arg1 ^ Arg2; uint64_t ArgDistance = __builtin_popcountll(ArgXor) + 1; // [1,65] uintptr_t Idx = ((PC & 4095) + 1) * ArgDistance; if (sizeof(T) == 4) TORC4.Insert(ArgXor, Arg1, Arg2); else if (sizeof(T) == 8) TORC8.Insert(ArgXor, Arg1, Arg2); // TODO: remove these flags and instead use all metrics at once. if (UseValueProfileMask & 1) ValueProfileMap.AddValue(Idx); if (UseValueProfileMask & 2) ValueProfileMap.AddValue( PC * 64 + (Arg1 == Arg2 ? 0 : __builtin_clzll(Arg1 - Arg2) + 1)); if (UseValueProfileMask & 4) // alternative way to use the hamming distance ValueProfileMap.AddValue(PC * 64 + ArgDistance); } static size_t InternalStrnlen(const char *S, size_t MaxLen) { size_t Len = 0; for (; Len < MaxLen && S[Len]; Len++) {} return Len; } // Finds min of (strlen(S1), strlen(S2)). // Needed bacause one of these strings may actually be non-zero terminated. static size_t InternalStrnlen2(const char *S1, const char *S2) { size_t Len = 0; for (; S1[Len] && S2[Len]; Len++) {} return Len; } void TracePC::ClearInlineCounters() { for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) { uint8_t *Beg = ModuleCounters[i].Start; size_t Size = ModuleCounters[i].Stop - Beg; memset(Beg, 0, Size); } } ATTRIBUTE_NO_SANITIZE_ALL void TracePC::RecordInitialStack() { int stack; __sancov_lowest_stack = InitialStack = reinterpret_cast(&stack); } uintptr_t TracePC::GetMaxStackOffset() const { return InitialStack - __sancov_lowest_stack; // Stack grows down } } // namespace fuzzer extern "C" { ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); uint32_t Idx = *Guard; __sancov_trace_pc_pcs[Idx] = PC; __sancov_trace_pc_guard_8bit_counters[Idx]++; } // Best-effort support for -fsanitize-coverage=trace-pc, which is available // in both Clang and GCC. ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL void __sanitizer_cov_trace_pc() { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); uintptr_t Idx = PC & (((uintptr_t)1 << fuzzer::TracePC::kTracePcBits) - 1); __sancov_trace_pc_pcs[Idx] = PC; __sancov_trace_pc_guard_8bit_counters[Idx]++; } ATTRIBUTE_INTERFACE void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) { fuzzer::TPC.HandleInit(Start, Stop); } ATTRIBUTE_INTERFACE void __sanitizer_cov_8bit_counters_init(uint8_t *Start, uint8_t *Stop) { fuzzer::TPC.HandleInline8bitCountersInit(Start, Stop); } ATTRIBUTE_INTERFACE void __sanitizer_cov_pcs_init(const uintptr_t *pcs_beg, const uintptr_t *pcs_end) { fuzzer::TPC.HandlePCsInit(pcs_beg, pcs_end); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCallerCallee(PC, Callee); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT // Now the __sanitizer_cov_trace_const_cmp[1248] callbacks just mimic // the behaviour of __sanitizer_cov_trace_cmp[1248] ones. This, however, // should be changed later to make full use of instrumentation. void __sanitizer_cov_trace_const_cmp8(uint64_t Arg1, uint64_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_const_cmp4(uint32_t Arg1, uint32_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_const_cmp2(uint16_t Arg1, uint16_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_const_cmp1(uint8_t Arg1, uint8_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) { uint64_t N = Cases[0]; uint64_t ValSizeInBits = Cases[1]; uint64_t *Vals = Cases + 2; // Skip the most common and the most boring case. if (Vals[N - 1] < 256 && Val < 256) return; uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); size_t i; uint64_t Token = 0; for (i = 0; i < N; i++) { Token = Val ^ Vals[i]; if (Val < Vals[i]) break; } if (ValSizeInBits == 16) fuzzer::TPC.HandleCmp(PC + i, static_cast(Token), (uint16_t)(0)); else if (ValSizeInBits == 32) fuzzer::TPC.HandleCmp(PC + i, static_cast(Token), (uint32_t)(0)); else fuzzer::TPC.HandleCmp(PC + i, Token, (uint64_t)(0)); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_div4(uint32_t Val) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Val, (uint32_t)0); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_div8(uint64_t Val) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Val, (uint64_t)0); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_gep(uintptr_t Idx) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Idx, (uintptr_t)0); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1, const void *s2, size_t n, int result) { if (!fuzzer::RunningUserCallback) return; if (result == 0) return; // No reason to mutate. if (n <= 1) return; // Not interesting. fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/false); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1, const char *s2, size_t n, int result) { if (!fuzzer::RunningUserCallback) return; if (result == 0) return; // No reason to mutate. size_t Len1 = fuzzer::InternalStrnlen(s1, n); size_t Len2 = fuzzer::InternalStrnlen(s2, n); n = std::min(n, Len1); n = std::min(n, Len2); if (n <= 1) return; // Not interesting. fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/true); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1, const char *s2, int result) { if (!fuzzer::RunningUserCallback) return; if (result == 0) return; // No reason to mutate. size_t N = fuzzer::InternalStrnlen2(s1, s2); if (N <= 1) return; // Not interesting. fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, N, /*StopAtZero*/true); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strncasecmp(void *called_pc, const char *s1, const char *s2, size_t n, int result) { if (!fuzzer::RunningUserCallback) return; return __sanitizer_weak_hook_strncmp(called_pc, s1, s2, n, result); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strcasecmp(void *called_pc, const char *s1, const char *s2, int result) { if (!fuzzer::RunningUserCallback) return; return __sanitizer_weak_hook_strcmp(called_pc, s1, s2, result); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strstr(void *called_pc, const char *s1, const char *s2, char *result) { if (!fuzzer::RunningUserCallback) return; fuzzer::TPC.MMT.Add(reinterpret_cast(s2), strlen(s2)); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strcasestr(void *called_pc, const char *s1, const char *s2, char *result) { if (!fuzzer::RunningUserCallback) return; fuzzer::TPC.MMT.Add(reinterpret_cast(s2), strlen(s2)); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_memmem(void *called_pc, const void *s1, size_t len1, const void *s2, size_t len2, void *result) { if (!fuzzer::RunningUserCallback) return; fuzzer::TPC.MMT.Add(reinterpret_cast(s2), len2); } } // extern "C"