//===- FuzzerSHA1.h - Private copy of the SHA1 implementation ---*- C++ -* ===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This code is taken from public domain // (http://oauth.googlecode.com/svn/code/c/liboauth/src/sha1.c) // and modified by adding anonymous namespace, adding an interface // function fuzzer::ComputeSHA1() and removing unnecessary code. // // lib/Fuzzer can not use SHA1 implementation from openssl because // openssl may not be available and because we may be fuzzing openssl itself. // For the same reason we do not want to depend on SHA1 from LLVM tree. //===----------------------------------------------------------------------===// #include "FuzzerSHA1.h" #include "FuzzerDefs.h" /* This code is public-domain - it is based on libcrypt * placed in the public domain by Wei Dai and other contributors. */ #include #include #include #include namespace { // Added for LibFuzzer #ifdef __BIG_ENDIAN__ # define SHA_BIG_ENDIAN #elif defined __LITTLE_ENDIAN__ /* override */ #elif defined __BYTE_ORDER # if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ # define SHA_BIG_ENDIAN # endif #else // ! defined __LITTLE_ENDIAN__ # include // machine/endian.h # if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ # define SHA_BIG_ENDIAN # endif #endif /* header */ #define HASH_LENGTH 20 #define BLOCK_LENGTH 64 typedef struct sha1nfo { uint32_t buffer[BLOCK_LENGTH/4]; uint32_t state[HASH_LENGTH/4]; uint32_t byteCount; uint8_t bufferOffset; uint8_t keyBuffer[BLOCK_LENGTH]; uint8_t innerHash[HASH_LENGTH]; } sha1nfo; /* public API - prototypes - TODO: doxygen*/ /** */ void sha1_init(sha1nfo *s); /** */ void sha1_writebyte(sha1nfo *s, uint8_t data); /** */ void sha1_write(sha1nfo *s, const char *data, size_t len); /** */ uint8_t* sha1_result(sha1nfo *s); /* code */ #define SHA1_K0 0x5a827999 #define SHA1_K20 0x6ed9eba1 #define SHA1_K40 0x8f1bbcdc #define SHA1_K60 0xca62c1d6 void sha1_init(sha1nfo *s) { s->state[0] = 0x67452301; s->state[1] = 0xefcdab89; s->state[2] = 0x98badcfe; s->state[3] = 0x10325476; s->state[4] = 0xc3d2e1f0; s->byteCount = 0; s->bufferOffset = 0; } uint32_t sha1_rol32(uint32_t number, uint8_t bits) { return ((number << bits) | (number >> (32-bits))); } void sha1_hashBlock(sha1nfo *s) { uint8_t i; uint32_t a,b,c,d,e,t; a=s->state[0]; b=s->state[1]; c=s->state[2]; d=s->state[3]; e=s->state[4]; for (i=0; i<80; i++) { if (i>=16) { t = s->buffer[(i+13)&15] ^ s->buffer[(i+8)&15] ^ s->buffer[(i+2)&15] ^ s->buffer[i&15]; s->buffer[i&15] = sha1_rol32(t,1); } if (i<20) { t = (d ^ (b & (c ^ d))) + SHA1_K0; } else if (i<40) { t = (b ^ c ^ d) + SHA1_K20; } else if (i<60) { t = ((b & c) | (d & (b | c))) + SHA1_K40; } else { t = (b ^ c ^ d) + SHA1_K60; } t+=sha1_rol32(a,5) + e + s->buffer[i&15]; e=d; d=c; c=sha1_rol32(b,30); b=a; a=t; } s->state[0] += a; s->state[1] += b; s->state[2] += c; s->state[3] += d; s->state[4] += e; } void sha1_addUncounted(sha1nfo *s, uint8_t data) { uint8_t * const b = (uint8_t*) s->buffer; #ifdef SHA_BIG_ENDIAN b[s->bufferOffset] = data; #else b[s->bufferOffset ^ 3] = data; #endif s->bufferOffset++; if (s->bufferOffset == BLOCK_LENGTH) { sha1_hashBlock(s); s->bufferOffset = 0; } } void sha1_writebyte(sha1nfo *s, uint8_t data) { ++s->byteCount; sha1_addUncounted(s, data); } void sha1_write(sha1nfo *s, const char *data, size_t len) { for (;len--;) sha1_writebyte(s, (uint8_t) *data++); } void sha1_pad(sha1nfo *s) { // Implement SHA-1 padding (fips180-2 ยง5.1.1) // Pad with 0x80 followed by 0x00 until the end of the block sha1_addUncounted(s, 0x80); while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00); // Append length in the last 8 bytes sha1_addUncounted(s, 0); // We're only using 32 bit lengths sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths sha1_addUncounted(s, 0); // So zero pad the top bits sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8 sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as sha1_addUncounted(s, s->byteCount >> 13); // byte. sha1_addUncounted(s, s->byteCount >> 5); sha1_addUncounted(s, s->byteCount << 3); } uint8_t* sha1_result(sha1nfo *s) { // Pad to complete the last block sha1_pad(s); #ifndef SHA_BIG_ENDIAN // Swap byte order back int i; for (i=0; i<5; i++) { s->state[i]= (((s->state[i])<<24)& 0xff000000) | (((s->state[i])<<8) & 0x00ff0000) | (((s->state[i])>>8) & 0x0000ff00) | (((s->state[i])>>24)& 0x000000ff); } #endif // Return pointer to hash (20 characters) return (uint8_t*) s->state; } } // namespace; Added for LibFuzzer namespace fuzzer { // The rest is added for LibFuzzer void ComputeSHA1(const uint8_t *Data, size_t Len, uint8_t *Out) { sha1nfo s; sha1_init(&s); sha1_write(&s, (const char*)Data, Len); memcpy(Out, sha1_result(&s), HASH_LENGTH); } std::string Sha1ToString(const uint8_t Sha1[kSHA1NumBytes]) { std::stringstream SS; for (int i = 0; i < kSHA1NumBytes; i++) SS << std::hex << std::setfill('0') << std::setw(2) << (unsigned)Sha1[i]; return SS.str(); } std::string Hash(const Unit &U) { uint8_t Hash[kSHA1NumBytes]; ComputeSHA1(U.data(), U.size(), Hash); return Sha1ToString(Hash); } }