//===- FuzzerCorpus.h - Internal header for the Fuzzer ----------*- C++ -* ===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // fuzzer::InputCorpus //===----------------------------------------------------------------------===// #ifndef LLVM_FUZZER_CORPUS #define LLVM_FUZZER_CORPUS #include "FuzzerDataFlowTrace.h" #include "FuzzerDefs.h" #include "FuzzerIO.h" #include "FuzzerRandom.h" #include "FuzzerSHA1.h" #include "FuzzerTracePC.h" #include #include #include #include namespace fuzzer { struct InputInfo { Unit U; // The actual input data. uint8_t Sha1[kSHA1NumBytes]; // Checksum. // Number of features that this input has and no smaller input has. size_t NumFeatures = 0; size_t Tmp = 0; // Used by ValidateFeatureSet. // Stats. size_t NumExecutedMutations = 0; size_t NumSuccessfullMutations = 0; bool MayDeleteFile = false; bool Reduced = false; bool HasFocusFunction = false; Vector UniqFeatureSet; Vector DataFlowTraceForFocusFunction; }; class InputCorpus { static const size_t kFeatureSetSize = 1 << 21; public: InputCorpus(const std::string &OutputCorpus) : OutputCorpus(OutputCorpus) { memset(InputSizesPerFeature, 0, sizeof(InputSizesPerFeature)); memset(SmallestElementPerFeature, 0, sizeof(SmallestElementPerFeature)); } ~InputCorpus() { for (auto II : Inputs) delete II; } size_t size() const { return Inputs.size(); } size_t SizeInBytes() const { size_t Res = 0; for (auto II : Inputs) Res += II->U.size(); return Res; } size_t NumActiveUnits() const { size_t Res = 0; for (auto II : Inputs) Res += !II->U.empty(); return Res; } size_t MaxInputSize() const { size_t Res = 0; for (auto II : Inputs) Res = std::max(Res, II->U.size()); return Res; } size_t NumInputsThatTouchFocusFunction() { return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) { return II->HasFocusFunction; }); } size_t NumInputsWithDataFlowTrace() { return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) { return !II->DataFlowTraceForFocusFunction.empty(); }); } bool empty() const { return Inputs.empty(); } const Unit &operator[] (size_t Idx) const { return Inputs[Idx]->U; } void AddToCorpus(const Unit &U, size_t NumFeatures, bool MayDeleteFile, bool HasFocusFunction, const Vector &FeatureSet, const DataFlowTrace &DFT, const InputInfo *BaseII) { assert(!U.empty()); if (FeatureDebug) Printf("ADD_TO_CORPUS %zd NF %zd\n", Inputs.size(), NumFeatures); Inputs.push_back(new InputInfo()); InputInfo &II = *Inputs.back(); II.U = U; II.NumFeatures = NumFeatures; II.MayDeleteFile = MayDeleteFile; II.UniqFeatureSet = FeatureSet; II.HasFocusFunction = HasFocusFunction; std::sort(II.UniqFeatureSet.begin(), II.UniqFeatureSet.end()); ComputeSHA1(U.data(), U.size(), II.Sha1); auto Sha1Str = Sha1ToString(II.Sha1); Hashes.insert(Sha1Str); if (HasFocusFunction) if (auto V = DFT.Get(Sha1Str)) II.DataFlowTraceForFocusFunction = *V; // This is a gross heuristic. // Ideally, when we add an element to a corpus we need to know its DFT. // But if we don't, we'll use the DFT of its base input. if (II.DataFlowTraceForFocusFunction.empty() && BaseII) II.DataFlowTraceForFocusFunction = BaseII->DataFlowTraceForFocusFunction; UpdateCorpusDistribution(); PrintCorpus(); // ValidateFeatureSet(); } // Debug-only void PrintUnit(const Unit &U) { if (!FeatureDebug) return; for (uint8_t C : U) { if (C != 'F' && C != 'U' && C != 'Z') C = '.'; Printf("%c", C); } } // Debug-only void PrintFeatureSet(const Vector &FeatureSet) { if (!FeatureDebug) return; Printf("{"); for (uint32_t Feature: FeatureSet) Printf("%u,", Feature); Printf("}"); } // Debug-only void PrintCorpus() { if (!FeatureDebug) return; Printf("======= CORPUS:\n"); int i = 0; for (auto II : Inputs) { if (std::find(II->U.begin(), II->U.end(), 'F') != II->U.end()) { Printf("[%2d] ", i); Printf("%s sz=%zd ", Sha1ToString(II->Sha1).c_str(), II->U.size()); PrintUnit(II->U); Printf(" "); PrintFeatureSet(II->UniqFeatureSet); Printf("\n"); } i++; } } void Replace(InputInfo *II, const Unit &U) { assert(II->U.size() > U.size()); Hashes.erase(Sha1ToString(II->Sha1)); DeleteFile(*II); ComputeSHA1(U.data(), U.size(), II->Sha1); Hashes.insert(Sha1ToString(II->Sha1)); II->U = U; II->Reduced = true; UpdateCorpusDistribution(); } bool HasUnit(const Unit &U) { return Hashes.count(Hash(U)); } bool HasUnit(const std::string &H) { return Hashes.count(H); } InputInfo &ChooseUnitToMutate(Random &Rand) { InputInfo &II = *Inputs[ChooseUnitIdxToMutate(Rand)]; assert(!II.U.empty()); return II; }; // Returns an index of random unit from the corpus to mutate. size_t ChooseUnitIdxToMutate(Random &Rand) { size_t Idx = static_cast(CorpusDistribution(Rand)); assert(Idx < Inputs.size()); return Idx; } void PrintStats() { for (size_t i = 0; i < Inputs.size(); i++) { const auto &II = *Inputs[i]; Printf(" [% 3zd %s] sz: % 5zd runs: % 5zd succ: % 5zd focus: %d\n", i, Sha1ToString(II.Sha1).c_str(), II.U.size(), II.NumExecutedMutations, II.NumSuccessfullMutations, II.HasFocusFunction); } } void PrintFeatureSet() { for (size_t i = 0; i < kFeatureSetSize; i++) { if(size_t Sz = GetFeature(i)) Printf("[%zd: id %zd sz%zd] ", i, SmallestElementPerFeature[i], Sz); } Printf("\n\t"); for (size_t i = 0; i < Inputs.size(); i++) if (size_t N = Inputs[i]->NumFeatures) Printf(" %zd=>%zd ", i, N); Printf("\n"); } void DeleteFile(const InputInfo &II) { if (!OutputCorpus.empty() && II.MayDeleteFile) RemoveFile(DirPlusFile(OutputCorpus, Sha1ToString(II.Sha1))); } void DeleteInput(size_t Idx) { InputInfo &II = *Inputs[Idx]; DeleteFile(II); Unit().swap(II.U); if (FeatureDebug) Printf("EVICTED %zd\n", Idx); } bool AddFeature(size_t Idx, uint32_t NewSize, bool Shrink) { assert(NewSize); Idx = Idx % kFeatureSetSize; uint32_t OldSize = GetFeature(Idx); if (OldSize == 0 || (Shrink && OldSize > NewSize)) { if (OldSize > 0) { size_t OldIdx = SmallestElementPerFeature[Idx]; InputInfo &II = *Inputs[OldIdx]; assert(II.NumFeatures > 0); II.NumFeatures--; if (II.NumFeatures == 0) DeleteInput(OldIdx); } else { NumAddedFeatures++; } NumUpdatedFeatures++; if (FeatureDebug) Printf("ADD FEATURE %zd sz %d\n", Idx, NewSize); SmallestElementPerFeature[Idx] = Inputs.size(); InputSizesPerFeature[Idx] = NewSize; return true; } return false; } bool IsFeatureNew(size_t Idx, uint32_t NewSize, bool Shrink) { assert(NewSize); uint32_t OldSize = GetFeature(Idx % kFeatureSetSize); return OldSize == 0 || (Shrink && OldSize > NewSize); } size_t NumFeatures() const { return NumAddedFeatures; } size_t NumFeatureUpdates() const { return NumUpdatedFeatures; } private: static const bool FeatureDebug = false; size_t GetFeature(size_t Idx) const { return InputSizesPerFeature[Idx]; } void ValidateFeatureSet() { if (FeatureDebug) PrintFeatureSet(); for (size_t Idx = 0; Idx < kFeatureSetSize; Idx++) if (GetFeature(Idx)) Inputs[SmallestElementPerFeature[Idx]]->Tmp++; for (auto II: Inputs) { if (II->Tmp != II->NumFeatures) Printf("ZZZ %zd %zd\n", II->Tmp, II->NumFeatures); assert(II->Tmp == II->NumFeatures); II->Tmp = 0; } } // Updates the probability distribution for the units in the corpus. // Must be called whenever the corpus or unit weights are changed. // // Hypothesis: units added to the corpus last are more interesting. // // Hypothesis: inputs with infrequent features are more interesting. void UpdateCorpusDistribution() { size_t N = Inputs.size(); assert(N); Intervals.resize(N + 1); Weights.resize(N); std::iota(Intervals.begin(), Intervals.end(), 0); for (size_t i = 0; i < N; i++) Weights[i] = Inputs[i]->NumFeatures ? (i + 1) * (Inputs[i]->HasFocusFunction ? 1000 : 1) : 0.; if (FeatureDebug) { for (size_t i = 0; i < N; i++) Printf("%zd ", Inputs[i]->NumFeatures); Printf("SCORE\n"); for (size_t i = 0; i < N; i++) Printf("%f ", Weights[i]); Printf("Weights\n"); } CorpusDistribution = std::piecewise_constant_distribution( Intervals.begin(), Intervals.end(), Weights.begin()); } std::piecewise_constant_distribution CorpusDistribution; Vector Intervals; Vector Weights; std::unordered_set Hashes; Vector Inputs; size_t NumAddedFeatures = 0; size_t NumUpdatedFeatures = 0; uint32_t InputSizesPerFeature[kFeatureSetSize]; uint32_t SmallestElementPerFeature[kFeatureSetSize]; std::string OutputCorpus; }; } // namespace fuzzer #endif // LLVM_FUZZER_CORPUS