//===-- dfsan.cc ----------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of DataFlowSanitizer. // // DataFlowSanitizer runtime. This file defines the public interface to // DataFlowSanitizer as well as the definition of certain runtime functions // called automatically by the compiler (specifically the instrumentation pass // in llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp). // // The public interface is defined in include/sanitizer/dfsan_interface.h whose // functions are prefixed dfsan_ while the compiler interface functions are // prefixed __dfsan_. //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_atomic.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_file.h" #include "sanitizer_common/sanitizer_flags.h" #include "sanitizer_common/sanitizer_flag_parser.h" #include "sanitizer_common/sanitizer_libc.h" #include "dfsan/dfsan.h" using namespace __dfsan; typedef atomic_uint16_t atomic_dfsan_label; static const dfsan_label kInitializingLabel = -1; static const uptr kNumLabels = 1 << (sizeof(dfsan_label) * 8); static atomic_dfsan_label __dfsan_last_label; static dfsan_label_info __dfsan_label_info[kNumLabels]; Flags __dfsan::flags_data; SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_retval_tls; SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_arg_tls[64]; SANITIZER_INTERFACE_ATTRIBUTE uptr __dfsan_shadow_ptr_mask; // On Linux/x86_64, memory is laid out as follows: // // +--------------------+ 0x800000000000 (top of memory) // | application memory | // +--------------------+ 0x700000008000 (kAppAddr) // | | // | unused | // | | // +--------------------+ 0x200200000000 (kUnusedAddr) // | union table | // +--------------------+ 0x200000000000 (kUnionTableAddr) // | shadow memory | // +--------------------+ 0x000000010000 (kShadowAddr) // | reserved by kernel | // +--------------------+ 0x000000000000 // // To derive a shadow memory address from an application memory address, // bits 44-46 are cleared to bring the address into the range // [0x000000008000,0x100000000000). Then the address is shifted left by 1 to // account for the double byte representation of shadow labels and move the // address into the shadow memory range. See the function shadow_for below. // On Linux/MIPS64, memory is laid out as follows: // // +--------------------+ 0x10000000000 (top of memory) // | application memory | // +--------------------+ 0xF000008000 (kAppAddr) // | | // | unused | // | | // +--------------------+ 0x2200000000 (kUnusedAddr) // | union table | // +--------------------+ 0x2000000000 (kUnionTableAddr) // | shadow memory | // +--------------------+ 0x0000010000 (kShadowAddr) // | reserved by kernel | // +--------------------+ 0x0000000000 // On Linux/AArch64 (39-bit VMA), memory is laid out as follow: // // +--------------------+ 0x8000000000 (top of memory) // | application memory | // +--------------------+ 0x7000008000 (kAppAddr) // | | // | unused | // | | // +--------------------+ 0x1200000000 (kUnusedAddr) // | union table | // +--------------------+ 0x1000000000 (kUnionTableAddr) // | shadow memory | // +--------------------+ 0x0000010000 (kShadowAddr) // | reserved by kernel | // +--------------------+ 0x0000000000 // On Linux/AArch64 (42-bit VMA), memory is laid out as follow: // // +--------------------+ 0x40000000000 (top of memory) // | application memory | // +--------------------+ 0x3ff00008000 (kAppAddr) // | | // | unused | // | | // +--------------------+ 0x1200000000 (kUnusedAddr) // | union table | // +--------------------+ 0x8000000000 (kUnionTableAddr) // | shadow memory | // +--------------------+ 0x0000010000 (kShadowAddr) // | reserved by kernel | // +--------------------+ 0x0000000000 // On Linux/AArch64 (48-bit VMA), memory is laid out as follow: // // +--------------------+ 0x1000000000000 (top of memory) // | application memory | // +--------------------+ 0xffff00008000 (kAppAddr) // | unused | // +--------------------+ 0xaaaab0000000 (top of PIE address) // | application PIE | // +--------------------+ 0xaaaaa0000000 (top of PIE address) // | | // | unused | // | | // +--------------------+ 0x1200000000 (kUnusedAddr) // | union table | // +--------------------+ 0x8000000000 (kUnionTableAddr) // | shadow memory | // +--------------------+ 0x0000010000 (kShadowAddr) // | reserved by kernel | // +--------------------+ 0x0000000000 typedef atomic_dfsan_label dfsan_union_table_t[kNumLabels][kNumLabels]; #ifdef DFSAN_RUNTIME_VMA // Runtime detected VMA size. int __dfsan::vmaSize; #endif static uptr UnusedAddr() { return MappingArchImpl() + sizeof(dfsan_union_table_t); } static atomic_dfsan_label *union_table(dfsan_label l1, dfsan_label l2) { return &(*(dfsan_union_table_t *) UnionTableAddr())[l1][l2]; } // Checks we do not run out of labels. static void dfsan_check_label(dfsan_label label) { if (label == kInitializingLabel) { Report("FATAL: DataFlowSanitizer: out of labels\n"); Die(); } } // Resolves the union of two unequal labels. Nonequality is a precondition for // this function (the instrumentation pass inlines the equality test). extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label __dfsan_union(dfsan_label l1, dfsan_label l2) { DCHECK_NE(l1, l2); if (l1 == 0) return l2; if (l2 == 0) return l1; if (l1 > l2) Swap(l1, l2); atomic_dfsan_label *table_ent = union_table(l1, l2); // We need to deal with the case where two threads concurrently request // a union of the same pair of labels. If the table entry is uninitialized, // (i.e. 0) use a compare-exchange to set the entry to kInitializingLabel // (i.e. -1) to mark that we are initializing it. dfsan_label label = 0; if (atomic_compare_exchange_strong(table_ent, &label, kInitializingLabel, memory_order_acquire)) { // Check whether l2 subsumes l1. We don't need to check whether l1 // subsumes l2 because we are guaranteed here that l1 < l2, and (at least // in the cases we are interested in) a label may only subsume labels // created earlier (i.e. with a lower numerical value). if (__dfsan_label_info[l2].l1 == l1 || __dfsan_label_info[l2].l2 == l1) { label = l2; } else { label = atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1; dfsan_check_label(label); __dfsan_label_info[label].l1 = l1; __dfsan_label_info[label].l2 = l2; } atomic_store(table_ent, label, memory_order_release); } else if (label == kInitializingLabel) { // Another thread is initializing the entry. Wait until it is finished. do { internal_sched_yield(); label = atomic_load(table_ent, memory_order_acquire); } while (label == kInitializingLabel); } return label; } extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label __dfsan_union_load(const dfsan_label *ls, uptr n) { dfsan_label label = ls[0]; for (uptr i = 1; i != n; ++i) { dfsan_label next_label = ls[i]; if (label != next_label) label = __dfsan_union(label, next_label); } return label; } extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_unimplemented(char *fname) { if (flags().warn_unimplemented) Report("WARNING: DataFlowSanitizer: call to uninstrumented function %s\n", fname); } // Use '-mllvm -dfsan-debug-nonzero-labels' and break on this function // to try to figure out where labels are being introduced in a nominally // label-free program. extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_nonzero_label() { if (flags().warn_nonzero_labels) Report("WARNING: DataFlowSanitizer: saw nonzero label\n"); } // Indirect call to an uninstrumented vararg function. We don't have a way of // handling these at the moment. extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_vararg_wrapper(const char *fname) { Report("FATAL: DataFlowSanitizer: unsupported indirect call to vararg " "function %s\n", fname); Die(); } // Like __dfsan_union, but for use from the client or custom functions. Hence // the equality comparison is done here before calling __dfsan_union. SANITIZER_INTERFACE_ATTRIBUTE dfsan_label dfsan_union(dfsan_label l1, dfsan_label l2) { if (l1 == l2) return l1; return __dfsan_union(l1, l2); } extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label dfsan_create_label(const char *desc, void *userdata) { dfsan_label label = atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1; dfsan_check_label(label); __dfsan_label_info[label].l1 = __dfsan_label_info[label].l2 = 0; __dfsan_label_info[label].desc = desc; __dfsan_label_info[label].userdata = userdata; return label; } extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_set_label(dfsan_label label, void *addr, uptr size) { for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp) { // Don't write the label if it is already the value we need it to be. // In a program where most addresses are not labeled, it is common that // a page of shadow memory is entirely zeroed. The Linux copy-on-write // implementation will share all of the zeroed pages, making a copy of a // page when any value is written. The un-sharing will happen even if // the value written does not change the value in memory. Avoiding the // write when both |label| and |*labelp| are zero dramatically reduces // the amount of real memory used by large programs. if (label == *labelp) continue; *labelp = label; } } SANITIZER_INTERFACE_ATTRIBUTE void dfsan_set_label(dfsan_label label, void *addr, uptr size) { __dfsan_set_label(label, addr, size); } SANITIZER_INTERFACE_ATTRIBUTE void dfsan_add_label(dfsan_label label, void *addr, uptr size) { for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp) if (*labelp != label) *labelp = __dfsan_union(*labelp, label); } // Unlike the other dfsan interface functions the behavior of this function // depends on the label of one of its arguments. Hence it is implemented as a // custom function. extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label __dfsw_dfsan_get_label(long data, dfsan_label data_label, dfsan_label *ret_label) { *ret_label = 0; return data_label; } SANITIZER_INTERFACE_ATTRIBUTE dfsan_label dfsan_read_label(const void *addr, uptr size) { if (size == 0) return 0; return __dfsan_union_load(shadow_for(addr), size); } extern "C" SANITIZER_INTERFACE_ATTRIBUTE const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) { return &__dfsan_label_info[label]; } extern "C" SANITIZER_INTERFACE_ATTRIBUTE int dfsan_has_label(dfsan_label label, dfsan_label elem) { if (label == elem) return true; const dfsan_label_info *info = dfsan_get_label_info(label); if (info->l1 != 0) { return dfsan_has_label(info->l1, elem) || dfsan_has_label(info->l2, elem); } else { return false; } } extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label dfsan_has_label_with_desc(dfsan_label label, const char *desc) { const dfsan_label_info *info = dfsan_get_label_info(label); if (info->l1 != 0) { return dfsan_has_label_with_desc(info->l1, desc) || dfsan_has_label_with_desc(info->l2, desc); } else { return internal_strcmp(desc, info->desc) == 0; } } extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr dfsan_get_label_count(void) { dfsan_label max_label_allocated = atomic_load(&__dfsan_last_label, memory_order_relaxed); return static_cast(max_label_allocated); } extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_dump_labels(int fd) { dfsan_label last_label = atomic_load(&__dfsan_last_label, memory_order_relaxed); for (uptr l = 1; l <= last_label; ++l) { char buf[64]; internal_snprintf(buf, sizeof(buf), "%u %u %u ", l, __dfsan_label_info[l].l1, __dfsan_label_info[l].l2); WriteToFile(fd, buf, internal_strlen(buf)); if (__dfsan_label_info[l].l1 == 0 && __dfsan_label_info[l].desc) { WriteToFile(fd, __dfsan_label_info[l].desc, internal_strlen(__dfsan_label_info[l].desc)); } WriteToFile(fd, "\n", 1); } } void Flags::SetDefaults() { #define DFSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue; #include "dfsan_flags.inc" #undef DFSAN_FLAG } static void RegisterDfsanFlags(FlagParser *parser, Flags *f) { #define DFSAN_FLAG(Type, Name, DefaultValue, Description) \ RegisterFlag(parser, #Name, Description, &f->Name); #include "dfsan_flags.inc" #undef DFSAN_FLAG } static void InitializeFlags() { SetCommonFlagsDefaults(); flags().SetDefaults(); FlagParser parser; RegisterCommonFlags(&parser); RegisterDfsanFlags(&parser, &flags()); parser.ParseString(GetEnv("DFSAN_OPTIONS")); InitializeCommonFlags(); if (Verbosity()) ReportUnrecognizedFlags(); if (common_flags()->help) parser.PrintFlagDescriptions(); } static void InitializePlatformEarly() { AvoidCVE_2016_2143(); #ifdef DFSAN_RUNTIME_VMA __dfsan::vmaSize = (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1); if (__dfsan::vmaSize == 39 || __dfsan::vmaSize == 42 || __dfsan::vmaSize == 48) { __dfsan_shadow_ptr_mask = ShadowMask(); } else { Printf("FATAL: DataFlowSanitizer: unsupported VMA range\n"); Printf("FATAL: Found %d - Supported 39, 42, and 48\n", __dfsan::vmaSize); Die(); } #endif } static void dfsan_fini() { if (internal_strcmp(flags().dump_labels_at_exit, "") != 0) { fd_t fd = OpenFile(flags().dump_labels_at_exit, WrOnly); if (fd == kInvalidFd) { Report("WARNING: DataFlowSanitizer: unable to open output file %s\n", flags().dump_labels_at_exit); return; } Report("INFO: DataFlowSanitizer: dumping labels to %s\n", flags().dump_labels_at_exit); dfsan_dump_labels(fd); CloseFile(fd); } } static void dfsan_init(int argc, char **argv, char **envp) { InitializeFlags(); InitializePlatformEarly(); if (!MmapFixedNoReserve(ShadowAddr(), UnusedAddr() - ShadowAddr())) Die(); // Protect the region of memory we don't use, to preserve the one-to-one // mapping from application to shadow memory. But if ASLR is disabled, Linux // will load our executable in the middle of our unused region. This mostly // works so long as the program doesn't use too much memory. We support this // case by disabling memory protection when ASLR is disabled. uptr init_addr = (uptr)&dfsan_init; if (!(init_addr >= UnusedAddr() && init_addr < AppAddr())) MmapFixedNoAccess(UnusedAddr(), AppAddr() - UnusedAddr()); InitializeInterceptors(); // Register the fini callback to run when the program terminates successfully // or it is killed by the runtime. Atexit(dfsan_fini); AddDieCallback(dfsan_fini); __dfsan_label_info[kInitializingLabel].desc = ""; } #if SANITIZER_CAN_USE_PREINIT_ARRAY __attribute__((section(".preinit_array"), used)) static void (*dfsan_init_ptr)(int, char **, char **) = dfsan_init; #endif