/* ===-- floatundidf.c - Implement __floatundidf ---------------------------=== * * The LLVM Compiler Infrastructure * * This file is dual licensed under the MIT and the University of Illinois Open * Source Licenses. See LICENSE.TXT for details. * * ===----------------------------------------------------------------------=== * * This file implements __floatundidf for the compiler_rt library. * * ===----------------------------------------------------------------------=== */ /* Returns: convert a to a double, rounding toward even. */ /* Assumption: double is a IEEE 64 bit floating point type * du_int is a 64 bit integral type */ /* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */ #include "int_lib.h" #ifndef __SOFT_FP__ /* Support for systems that have hardware floating-point; we'll set the inexact flag * as a side-effect of this computation. */ COMPILER_RT_ABI double __floatundidf(du_int a) { static const double twop52 = 4503599627370496.0; // 0x1.0p52 static const double twop84 = 19342813113834066795298816.0; // 0x1.0p84 static const double twop84_plus_twop52 = 19342813118337666422669312.0; // 0x1.00000001p84 union { uint64_t x; double d; } high = { .d = twop84 }; union { uint64_t x; double d; } low = { .d = twop52 }; high.x |= a >> 32; low.x |= a & UINT64_C(0x00000000ffffffff); const double result = (high.d - twop84_plus_twop52) + low.d; return result; } #else /* Support for systems that don't have hardware floating-point; there are no flags to * set, and we don't want to code-gen to an unknown soft-float implementation. */ COMPILER_RT_ABI double __floatundidf(du_int a) { if (a == 0) return 0.0; const unsigned N = sizeof(du_int) * CHAR_BIT; int sd = N - __builtin_clzll(a); /* number of significant digits */ int e = sd - 1; /* exponent */ if (sd > DBL_MANT_DIG) { /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR * 12345678901234567890123456 * 1 = msb 1 bit * P = bit DBL_MANT_DIG-1 bits to the right of 1 * Q = bit DBL_MANT_DIG bits to the right of 1 * R = "or" of all bits to the right of Q */ switch (sd) { case DBL_MANT_DIG + 1: a <<= 1; break; case DBL_MANT_DIG + 2: break; default: a = (a >> (sd - (DBL_MANT_DIG+2))) | ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0); }; /* finish: */ a |= (a & 4) != 0; /* Or P into R */ ++a; /* round - this step may add a significant bit */ a >>= 2; /* dump Q and R */ /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */ if (a & ((du_int)1 << DBL_MANT_DIG)) { a >>= 1; ++e; } /* a is now rounded to DBL_MANT_DIG bits */ } else { a <<= (DBL_MANT_DIG - sd); /* a is now rounded to DBL_MANT_DIG bits */ } double_bits fb; fb.u.s.high = ((e + 1023) << 20) | /* exponent */ ((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */ fb.u.s.low = (su_int)a; /* mantissa-low */ return fb.f; } #endif #if defined(__ARM_EABI__) #if defined(COMPILER_RT_ARMHF_TARGET) AEABI_RTABI double __aeabi_ul2d(du_int a) { return __floatundidf(a); } #else AEABI_RTABI double __aeabi_ul2d(du_int a) COMPILER_RT_ALIAS(__floatundidf); #endif #endif