/* ===---------- emutls.c - Implements __emutls_get_address ---------------=== * * The LLVM Compiler Infrastructure * * This file is dual licensed under the MIT and the University of Illinois Open * Source Licenses. See LICENSE.TXT for details. * * ===----------------------------------------------------------------------=== */ #include #include #include #include "int_lib.h" #include "int_util.h" typedef struct emutls_address_array { uintptr_t size; /* number of elements in the 'data' array */ void* data[]; } emutls_address_array; static void emutls_shutdown(emutls_address_array *array); #ifndef _WIN32 #include static pthread_mutex_t emutls_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_key_t emutls_pthread_key; typedef unsigned int gcc_word __attribute__((mode(word))); typedef unsigned int gcc_pointer __attribute__((mode(pointer))); /* Default is not to use posix_memalign, so systems like Android * can use thread local data without heavier POSIX memory allocators. */ #ifndef EMUTLS_USE_POSIX_MEMALIGN #define EMUTLS_USE_POSIX_MEMALIGN 0 #endif static __inline void *emutls_memalign_alloc(size_t align, size_t size) { void *base; #if EMUTLS_USE_POSIX_MEMALIGN if (posix_memalign(&base, align, size) != 0) abort(); #else #define EXTRA_ALIGN_PTR_BYTES (align - 1 + sizeof(void*)) char* object; if ((object = (char*)malloc(EXTRA_ALIGN_PTR_BYTES + size)) == NULL) abort(); base = (void*)(((uintptr_t)(object + EXTRA_ALIGN_PTR_BYTES)) & ~(uintptr_t)(align - 1)); ((void**)base)[-1] = object; #endif return base; } static __inline void emutls_memalign_free(void *base) { #if EMUTLS_USE_POSIX_MEMALIGN free(base); #else /* The mallocated address is in ((void**)base)[-1] */ free(((void**)base)[-1]); #endif } static void emutls_key_destructor(void* ptr) { emutls_shutdown((emutls_address_array*)ptr); free(ptr); } static __inline void emutls_init(void) { if (pthread_key_create(&emutls_pthread_key, emutls_key_destructor) != 0) abort(); } static __inline void emutls_init_once(void) { static pthread_once_t once = PTHREAD_ONCE_INIT; pthread_once(&once, emutls_init); } static __inline void emutls_lock() { pthread_mutex_lock(&emutls_mutex); } static __inline void emutls_unlock() { pthread_mutex_unlock(&emutls_mutex); } static __inline void emutls_setspecific(emutls_address_array *value) { pthread_setspecific(emutls_pthread_key, (void*) value); } static __inline emutls_address_array* emutls_getspecific() { return (emutls_address_array*) pthread_getspecific(emutls_pthread_key); } #else #include #include #include #include static LPCRITICAL_SECTION emutls_mutex; static DWORD emutls_tls_index = TLS_OUT_OF_INDEXES; typedef uintptr_t gcc_word; typedef void * gcc_pointer; static void win_error(DWORD last_err, const char *hint) { char *buffer = NULL; if (FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_MAX_WIDTH_MASK, NULL, last_err, 0, (LPSTR)&buffer, 1, NULL)) { fprintf(stderr, "Windows error: %s\n", buffer); } else { fprintf(stderr, "Unkown Windows error: %s\n", hint); } LocalFree(buffer); } static __inline void win_abort(DWORD last_err, const char *hint) { win_error(last_err, hint); abort(); } static __inline void *emutls_memalign_alloc(size_t align, size_t size) { void *base = _aligned_malloc(size, align); if (!base) win_abort(GetLastError(), "_aligned_malloc"); return base; } static __inline void emutls_memalign_free(void *base) { _aligned_free(base); } static void emutls_exit(void) { if (emutls_mutex) { DeleteCriticalSection(emutls_mutex); _aligned_free(emutls_mutex); emutls_mutex = NULL; } if (emutls_tls_index != TLS_OUT_OF_INDEXES) { emutls_shutdown((emutls_address_array*)TlsGetValue(emutls_tls_index)); TlsFree(emutls_tls_index); emutls_tls_index = TLS_OUT_OF_INDEXES; } } #pragma warning (push) #pragma warning (disable : 4100) static BOOL CALLBACK emutls_init(PINIT_ONCE p0, PVOID p1, PVOID *p2) { emutls_mutex = (LPCRITICAL_SECTION)_aligned_malloc(sizeof(CRITICAL_SECTION), 16); if (!emutls_mutex) { win_error(GetLastError(), "_aligned_malloc"); return FALSE; } InitializeCriticalSection(emutls_mutex); emutls_tls_index = TlsAlloc(); if (emutls_tls_index == TLS_OUT_OF_INDEXES) { emutls_exit(); win_error(GetLastError(), "TlsAlloc"); return FALSE; } atexit(&emutls_exit); return TRUE; } static __inline void emutls_init_once(void) { static INIT_ONCE once; InitOnceExecuteOnce(&once, emutls_init, NULL, NULL); } static __inline void emutls_lock() { EnterCriticalSection(emutls_mutex); } static __inline void emutls_unlock() { LeaveCriticalSection(emutls_mutex); } static __inline void emutls_setspecific(emutls_address_array *value) { if (TlsSetValue(emutls_tls_index, (LPVOID) value) == 0) win_abort(GetLastError(), "TlsSetValue"); } static __inline emutls_address_array* emutls_getspecific() { LPVOID value = TlsGetValue(emutls_tls_index); if (value == NULL) { const DWORD err = GetLastError(); if (err != ERROR_SUCCESS) win_abort(err, "TlsGetValue"); } return (emutls_address_array*) value; } /* Provide atomic load/store functions for emutls_get_index if built with MSVC. */ #if !defined(__ATOMIC_RELEASE) #include enum { __ATOMIC_ACQUIRE = 2, __ATOMIC_RELEASE = 3 }; static __inline uintptr_t __atomic_load_n(void *ptr, unsigned type) { assert(type == __ATOMIC_ACQUIRE); // These return the previous value - but since we do an OR with 0, // it's equivalent to a plain load. #ifdef _WIN64 return InterlockedOr64(ptr, 0); #else return InterlockedOr(ptr, 0); #endif } static __inline void __atomic_store_n(void *ptr, uintptr_t val, unsigned type) { assert(type == __ATOMIC_RELEASE); InterlockedExchangePointer((void *volatile *)ptr, (void *)val); } #endif #pragma warning (pop) #endif static size_t emutls_num_object = 0; /* number of allocated TLS objects */ /* Free the allocated TLS data */ static void emutls_shutdown(emutls_address_array *array) { if (array) { uintptr_t i; for (i = 0; i < array->size; ++i) { if (array->data[i]) emutls_memalign_free(array->data[i]); } } } /* For every TLS variable xyz, * there is one __emutls_control variable named __emutls_v.xyz. * If xyz has non-zero initial value, __emutls_v.xyz's "value" * will point to __emutls_t.xyz, which has the initial value. */ typedef struct __emutls_control { /* Must use gcc_word here, instead of size_t, to match GCC. When gcc_word is larger than size_t, the upper extra bits are all zeros. We can use variables of size_t to operate on size and align. */ gcc_word size; /* size of the object in bytes */ gcc_word align; /* alignment of the object in bytes */ union { uintptr_t index; /* data[index-1] is the object address */ void* address; /* object address, when in single thread env */ } object; void* value; /* null or non-zero initial value for the object */ } __emutls_control; /* Emulated TLS objects are always allocated at run-time. */ static __inline void *emutls_allocate_object(__emutls_control *control) { /* Use standard C types, check with gcc's emutls.o. */ COMPILE_TIME_ASSERT(sizeof(uintptr_t) == sizeof(gcc_pointer)); COMPILE_TIME_ASSERT(sizeof(uintptr_t) == sizeof(void*)); size_t size = control->size; size_t align = control->align; void* base; if (align < sizeof(void*)) align = sizeof(void*); /* Make sure that align is power of 2. */ if ((align & (align - 1)) != 0) abort(); base = emutls_memalign_alloc(align, size); if (control->value) memcpy(base, control->value, size); else memset(base, 0, size); return base; } /* Returns control->object.index; set index if not allocated yet. */ static __inline uintptr_t emutls_get_index(__emutls_control *control) { uintptr_t index = __atomic_load_n(&control->object.index, __ATOMIC_ACQUIRE); if (!index) { emutls_init_once(); emutls_lock(); index = control->object.index; if (!index) { index = ++emutls_num_object; __atomic_store_n(&control->object.index, index, __ATOMIC_RELEASE); } emutls_unlock(); } return index; } /* Updates newly allocated thread local emutls_address_array. */ static __inline void emutls_check_array_set_size(emutls_address_array *array, uintptr_t size) { if (array == NULL) abort(); array->size = size; emutls_setspecific(array); } /* Returns the new 'data' array size, number of elements, * which must be no smaller than the given index. */ static __inline uintptr_t emutls_new_data_array_size(uintptr_t index) { /* Need to allocate emutls_address_array with one extra slot * to store the data array size. * Round up the emutls_address_array size to multiple of 16. */ return ((index + 1 + 15) & ~((uintptr_t)15)) - 1; } /* Returns the size in bytes required for an emutls_address_array with * N number of elements for data field. */ static __inline uintptr_t emutls_asize(uintptr_t N) { return N * sizeof(void *) + sizeof(emutls_address_array); } /* Returns the thread local emutls_address_array. * Extends its size if necessary to hold address at index. */ static __inline emutls_address_array * emutls_get_address_array(uintptr_t index) { emutls_address_array* array = emutls_getspecific(); if (array == NULL) { uintptr_t new_size = emutls_new_data_array_size(index); array = (emutls_address_array*) malloc(emutls_asize(new_size)); if (array) memset(array->data, 0, new_size * sizeof(void*)); emutls_check_array_set_size(array, new_size); } else if (index > array->size) { uintptr_t orig_size = array->size; uintptr_t new_size = emutls_new_data_array_size(index); array = (emutls_address_array*) realloc(array, emutls_asize(new_size)); if (array) memset(array->data + orig_size, 0, (new_size - orig_size) * sizeof(void*)); emutls_check_array_set_size(array, new_size); } return array; } void* __emutls_get_address(__emutls_control* control) { uintptr_t index = emutls_get_index(control); emutls_address_array* array = emutls_get_address_array(index--); if (array->data[index] == NULL) array->data[index] = emutls_allocate_object(control); return array->data[index]; }