//===-- lib/comparedf2.c - Double-precision comparisons -----------*- C -*-===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // // This file implements the following soft-float comparison routines: // // __eqdf2 __gedf2 __unorddf2 // __ledf2 __gtdf2 // __ltdf2 // __nedf2 // // The semantics of the routines grouped in each column are identical, so there // is a single implementation for each, and wrappers to provide the other names. // // The main routines behave as follows: // // __ledf2(a,b) returns -1 if a < b // 0 if a == b // 1 if a > b // 1 if either a or b is NaN // // __gedf2(a,b) returns -1 if a < b // 0 if a == b // 1 if a > b // -1 if either a or b is NaN // // __unorddf2(a,b) returns 0 if both a and b are numbers // 1 if either a or b is NaN // // Note that __ledf2( ) and __gedf2( ) are identical except in their handling of // NaN values. // //===----------------------------------------------------------------------===// #define DOUBLE_PRECISION #include "fp_lib.h" enum LE_RESULT { LE_LESS = -1, LE_EQUAL = 0, LE_GREATER = 1, LE_UNORDERED = 1 }; COMPILER_RT_ABI enum LE_RESULT __ledf2(fp_t a, fp_t b) { const srep_t aInt = toRep(a); const srep_t bInt = toRep(b); const rep_t aAbs = aInt & absMask; const rep_t bAbs = bInt & absMask; // If either a or b is NaN, they are unordered. if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED; // If a and b are both zeros, they are equal. if ((aAbs | bAbs) == 0) return LE_EQUAL; // If at least one of a and b is positive, we get the same result comparing // a and b as signed integers as we would with a floating-point compare. if ((aInt & bInt) >= 0) { if (aInt < bInt) return LE_LESS; else if (aInt == bInt) return LE_EQUAL; else return LE_GREATER; } // Otherwise, both are negative, so we need to flip the sense of the // comparison to get the correct result. (This assumes a twos- or ones- // complement integer representation; if integers are represented in a // sign-magnitude representation, then this flip is incorrect). else { if (aInt > bInt) return LE_LESS; else if (aInt == bInt) return LE_EQUAL; else return LE_GREATER; } } enum GE_RESULT { GE_LESS = -1, GE_EQUAL = 0, GE_GREATER = 1, GE_UNORDERED = -1 // Note: different from LE_UNORDERED }; COMPILER_RT_ABI enum GE_RESULT __gedf2(fp_t a, fp_t b) { const srep_t aInt = toRep(a); const srep_t bInt = toRep(b); const rep_t aAbs = aInt & absMask; const rep_t bAbs = bInt & absMask; if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED; if ((aAbs | bAbs) == 0) return GE_EQUAL; if ((aInt & bInt) >= 0) { if (aInt < bInt) return GE_LESS; else if (aInt == bInt) return GE_EQUAL; else return GE_GREATER; } else { if (aInt > bInt) return GE_LESS; else if (aInt == bInt) return GE_EQUAL; else return GE_GREATER; } } ARM_EABI_FNALIAS(dcmpun, unorddf2) COMPILER_RT_ABI int __unorddf2(fp_t a, fp_t b) { const rep_t aAbs = toRep(a) & absMask; const rep_t bAbs = toRep(b) & absMask; return aAbs > infRep || bAbs > infRep; } // The following are alternative names for the preceding routines. COMPILER_RT_ABI enum LE_RESULT __eqdf2(fp_t a, fp_t b) { return __ledf2(a, b); } COMPILER_RT_ABI enum LE_RESULT __ltdf2(fp_t a, fp_t b) { return __ledf2(a, b); } COMPILER_RT_ABI enum LE_RESULT __nedf2(fp_t a, fp_t b) { return __ledf2(a, b); } COMPILER_RT_ABI enum GE_RESULT __gtdf2(fp_t a, fp_t b) { return __gedf2(a, b); }