//===-- asan_interface_test.cc --------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // //===----------------------------------------------------------------------===// #include "asan_test_utils.h" #include "sanitizer/asan_interface.h" TEST(AddressSanitizerInterface, GetEstimatedAllocatedSize) { EXPECT_EQ(0U, __asan_get_estimated_allocated_size(0)); const size_t sizes[] = { 1, 30, 1<<30 }; for (size_t i = 0; i < 3; i++) { EXPECT_EQ(sizes[i], __asan_get_estimated_allocated_size(sizes[i])); } } static const char* kGetAllocatedSizeErrorMsg = "attempting to call __asan_get_allocated_size()"; TEST(AddressSanitizerInterface, GetAllocatedSizeAndOwnershipTest) { const size_t kArraySize = 100; char *array = Ident((char*)malloc(kArraySize)); int *int_ptr = Ident(new int); // Allocated memory is owned by allocator. Allocated size should be // equal to requested size. EXPECT_EQ(true, __asan_get_ownership(array)); EXPECT_EQ(kArraySize, __asan_get_allocated_size(array)); EXPECT_EQ(true, __asan_get_ownership(int_ptr)); EXPECT_EQ(sizeof(int), __asan_get_allocated_size(int_ptr)); // We cannot call GetAllocatedSize from the memory we didn't map, // and from the interior pointers (not returned by previous malloc). void *wild_addr = (void*)0x1; EXPECT_FALSE(__asan_get_ownership(wild_addr)); EXPECT_DEATH(__asan_get_allocated_size(wild_addr), kGetAllocatedSizeErrorMsg); EXPECT_FALSE(__asan_get_ownership(array + kArraySize / 2)); EXPECT_DEATH(__asan_get_allocated_size(array + kArraySize / 2), kGetAllocatedSizeErrorMsg); // NULL is not owned, but is a valid argument for __asan_get_allocated_size(). EXPECT_FALSE(__asan_get_ownership(NULL)); EXPECT_EQ(0U, __asan_get_allocated_size(NULL)); // When memory is freed, it's not owned, and call to GetAllocatedSize // is forbidden. free(array); EXPECT_FALSE(__asan_get_ownership(array)); EXPECT_DEATH(__asan_get_allocated_size(array), kGetAllocatedSizeErrorMsg); delete int_ptr; void *zero_alloc = Ident(malloc(0)); if (zero_alloc != 0) { // If malloc(0) is not null, this pointer is owned and should have valid // allocated size. EXPECT_TRUE(__asan_get_ownership(zero_alloc)); // Allocated size is 0 or 1 depending on the allocator used. EXPECT_LT(__asan_get_allocated_size(zero_alloc), 2U); } free(zero_alloc); } TEST(AddressSanitizerInterface, GetCurrentAllocatedBytesTest) { size_t before_malloc, after_malloc, after_free; char *array; const size_t kMallocSize = 100; before_malloc = __asan_get_current_allocated_bytes(); array = Ident((char*)malloc(kMallocSize)); after_malloc = __asan_get_current_allocated_bytes(); EXPECT_EQ(before_malloc + kMallocSize, after_malloc); free(array); after_free = __asan_get_current_allocated_bytes(); EXPECT_EQ(before_malloc, after_free); } TEST(AddressSanitizerInterface, GetHeapSizeTest) { // asan_allocator2 does not keep huge chunks in free list, but unmaps them. // The chunk should be greater than the quarantine size, // otherwise it will be stuck in quarantine instead of being unmaped. static const size_t kLargeMallocSize = (1 << 28) + 1; // 256M free(Ident(malloc(kLargeMallocSize))); // Drain quarantine. size_t old_heap_size = __asan_get_heap_size(); for (int i = 0; i < 3; i++) { // fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize); free(Ident(malloc(kLargeMallocSize))); EXPECT_EQ(old_heap_size, __asan_get_heap_size()); } } static const size_t kManyThreadsMallocSizes[] = {5, 1UL<<10, 1UL<<14, 357}; static const size_t kManyThreadsIterations = 250; static const size_t kManyThreadsNumThreads = (SANITIZER_WORDSIZE == 32) ? 40 : 200; static void *ManyThreadsWithStatsWorker(void *arg) { (void)arg; for (size_t iter = 0; iter < kManyThreadsIterations; iter++) { for (size_t size_index = 0; size_index < 4; size_index++) { free(Ident(malloc(kManyThreadsMallocSizes[size_index]))); } } // Just one large allocation. free(Ident(malloc(1 << 20))); return 0; } TEST(AddressSanitizerInterface, ManyThreadsWithStatsStressTest) { size_t before_test, after_test, i; pthread_t threads[kManyThreadsNumThreads]; before_test = __asan_get_current_allocated_bytes(); for (i = 0; i < kManyThreadsNumThreads; i++) { PTHREAD_CREATE(&threads[i], 0, (void* (*)(void *x))ManyThreadsWithStatsWorker, (void*)i); } for (i = 0; i < kManyThreadsNumThreads; i++) { PTHREAD_JOIN(threads[i], 0); } after_test = __asan_get_current_allocated_bytes(); // ASan stats also reflect memory usage of internal ASan RTL structs, // so we can't check for equality here. EXPECT_LT(after_test, before_test + (1UL<<20)); } static void DoDoubleFree() { int *x = Ident(new int); delete Ident(x); delete Ident(x); } TEST(AddressSanitizerInterface, ExitCode) { int original_exit_code = __asan_set_error_exit_code(7); EXPECT_EXIT(DoDoubleFree(), ::testing::ExitedWithCode(7), ""); EXPECT_EQ(7, __asan_set_error_exit_code(8)); EXPECT_EXIT(DoDoubleFree(), ::testing::ExitedWithCode(8), ""); EXPECT_EQ(8, __asan_set_error_exit_code(original_exit_code)); EXPECT_EXIT(DoDoubleFree(), ::testing::ExitedWithCode(original_exit_code), ""); } static void MyDeathCallback() { fprintf(stderr, "MyDeathCallback\n"); } TEST(AddressSanitizerInterface, DeathCallbackTest) { __asan_set_death_callback(MyDeathCallback); EXPECT_DEATH(DoDoubleFree(), "MyDeathCallback"); __asan_set_death_callback(NULL); } static const char* kUseAfterPoisonErrorMessage = "use-after-poison"; #define GOOD_ACCESS(ptr, offset) \ EXPECT_FALSE(__asan_address_is_poisoned(ptr + offset)) #define BAD_ACCESS(ptr, offset) \ EXPECT_TRUE(__asan_address_is_poisoned(ptr + offset)) TEST(AddressSanitizerInterface, SimplePoisonMemoryRegionTest) { char *array = Ident((char*)malloc(120)); // poison array[40..80) __asan_poison_memory_region(array + 40, 40); GOOD_ACCESS(array, 39); GOOD_ACCESS(array, 80); BAD_ACCESS(array, 40); BAD_ACCESS(array, 60); BAD_ACCESS(array, 79); char value; EXPECT_DEATH(value = Ident(array[40]), kUseAfterPoisonErrorMessage); __asan_unpoison_memory_region(array + 40, 40); // access previously poisoned memory. GOOD_ACCESS(array, 40); GOOD_ACCESS(array, 79); free(array); } TEST(AddressSanitizerInterface, OverlappingPoisonMemoryRegionTest) { char *array = Ident((char*)malloc(120)); // Poison [0..40) and [80..120) __asan_poison_memory_region(array, 40); __asan_poison_memory_region(array + 80, 40); BAD_ACCESS(array, 20); GOOD_ACCESS(array, 60); BAD_ACCESS(array, 100); // Poison whole array - [0..120) __asan_poison_memory_region(array, 120); BAD_ACCESS(array, 60); // Unpoison [24..96) __asan_unpoison_memory_region(array + 24, 72); BAD_ACCESS(array, 23); GOOD_ACCESS(array, 24); GOOD_ACCESS(array, 60); GOOD_ACCESS(array, 95); BAD_ACCESS(array, 96); free(array); } TEST(AddressSanitizerInterface, PushAndPopWithPoisoningTest) { // Vector of capacity 20 char *vec = Ident((char*)malloc(20)); __asan_poison_memory_region(vec, 20); for (size_t i = 0; i < 7; i++) { // Simulate push_back. __asan_unpoison_memory_region(vec + i, 1); GOOD_ACCESS(vec, i); BAD_ACCESS(vec, i + 1); } for (size_t i = 7; i > 0; i--) { // Simulate pop_back. __asan_poison_memory_region(vec + i - 1, 1); BAD_ACCESS(vec, i - 1); if (i > 1) GOOD_ACCESS(vec, i - 2); } free(vec); } // Make sure that each aligned block of size "2^granularity" doesn't have // "true" value before "false" value. static void MakeShadowValid(bool *shadow, int length, int granularity) { bool can_be_poisoned = true; for (int i = length - 1; i >= 0; i--) { if (!shadow[i]) can_be_poisoned = false; if (!can_be_poisoned) shadow[i] = false; if (i % (1 << granularity) == 0) { can_be_poisoned = true; } } } TEST(AddressSanitizerInterface, PoisoningStressTest) { const size_t kSize = 24; bool expected[kSize]; char *arr = Ident((char*)malloc(kSize)); for (size_t l1 = 0; l1 < kSize; l1++) { for (size_t s1 = 1; l1 + s1 <= kSize; s1++) { for (size_t l2 = 0; l2 < kSize; l2++) { for (size_t s2 = 1; l2 + s2 <= kSize; s2++) { // Poison [l1, l1+s1), [l2, l2+s2) and check result. __asan_unpoison_memory_region(arr, kSize); __asan_poison_memory_region(arr + l1, s1); __asan_poison_memory_region(arr + l2, s2); memset(expected, false, kSize); memset(expected + l1, true, s1); MakeShadowValid(expected, kSize, /*granularity*/ 3); memset(expected + l2, true, s2); MakeShadowValid(expected, kSize, /*granularity*/ 3); for (size_t i = 0; i < kSize; i++) { ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i)); } // Unpoison [l1, l1+s1) and [l2, l2+s2) and check result. __asan_poison_memory_region(arr, kSize); __asan_unpoison_memory_region(arr + l1, s1); __asan_unpoison_memory_region(arr + l2, s2); memset(expected, true, kSize); memset(expected + l1, false, s1); MakeShadowValid(expected, kSize, /*granularity*/ 3); memset(expected + l2, false, s2); MakeShadowValid(expected, kSize, /*granularity*/ 3); for (size_t i = 0; i < kSize; i++) { ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i)); } } } } } free(arr); } TEST(AddressSanitizerInterface, GlobalRedzones) { GOOD_ACCESS(glob1, 1 - 1); GOOD_ACCESS(glob2, 2 - 1); GOOD_ACCESS(glob3, 3 - 1); GOOD_ACCESS(glob4, 4 - 1); GOOD_ACCESS(glob5, 5 - 1); GOOD_ACCESS(glob6, 6 - 1); GOOD_ACCESS(glob7, 7 - 1); GOOD_ACCESS(glob8, 8 - 1); GOOD_ACCESS(glob9, 9 - 1); GOOD_ACCESS(glob10, 10 - 1); GOOD_ACCESS(glob11, 11 - 1); GOOD_ACCESS(glob12, 12 - 1); GOOD_ACCESS(glob13, 13 - 1); GOOD_ACCESS(glob14, 14 - 1); GOOD_ACCESS(glob15, 15 - 1); GOOD_ACCESS(glob16, 16 - 1); GOOD_ACCESS(glob17, 17 - 1); GOOD_ACCESS(glob1000, 1000 - 1); GOOD_ACCESS(glob10000, 10000 - 1); GOOD_ACCESS(glob100000, 100000 - 1); BAD_ACCESS(glob1, 1); BAD_ACCESS(glob2, 2); BAD_ACCESS(glob3, 3); BAD_ACCESS(glob4, 4); BAD_ACCESS(glob5, 5); BAD_ACCESS(glob6, 6); BAD_ACCESS(glob7, 7); BAD_ACCESS(glob8, 8); BAD_ACCESS(glob9, 9); BAD_ACCESS(glob10, 10); BAD_ACCESS(glob11, 11); BAD_ACCESS(glob12, 12); BAD_ACCESS(glob13, 13); BAD_ACCESS(glob14, 14); BAD_ACCESS(glob15, 15); BAD_ACCESS(glob16, 16); BAD_ACCESS(glob17, 17); BAD_ACCESS(glob1000, 1000); BAD_ACCESS(glob1000, 1100); // Redzone is at least 101 bytes. BAD_ACCESS(glob10000, 10000); BAD_ACCESS(glob10000, 11000); // Redzone is at least 1001 bytes. BAD_ACCESS(glob100000, 100000); BAD_ACCESS(glob100000, 110000); // Redzone is at least 10001 bytes. } TEST(AddressSanitizerInterface, PoisonedRegion) { size_t rz = 16; for (size_t size = 1; size <= 64; size++) { char *p = new char[size]; for (size_t beg = 0; beg < size + rz; beg++) { for (size_t end = beg; end < size + rz; end++) { void *first_poisoned = __asan_region_is_poisoned(p + beg, end - beg); if (beg == end) { EXPECT_FALSE(first_poisoned); } else if (beg < size && end <= size) { EXPECT_FALSE(first_poisoned); } else if (beg >= size) { EXPECT_EQ(p + beg, first_poisoned); } else { EXPECT_GT(end, size); EXPECT_EQ(p + size, first_poisoned); } } } delete [] p; } } // This is a performance benchmark for manual runs. // asan's memset interceptor calls mem_is_zero for the entire shadow region. // the profile should look like this: // 89.10% [.] __memset_sse2 // 10.50% [.] __sanitizer::mem_is_zero // I.e. mem_is_zero should consume ~ SHADOW_GRANULARITY less CPU cycles // than memset itself. TEST(AddressSanitizerInterface, DISABLED_StressLargeMemset) { size_t size = 1 << 20; char *x = new char[size]; for (int i = 0; i < 100000; i++) Ident(memset)(x, 0, size); delete [] x; } // Same here, but we run memset with small sizes. TEST(AddressSanitizerInterface, DISABLED_StressSmallMemset) { size_t size = 32; char *x = new char[size]; for (int i = 0; i < 100000000; i++) Ident(memset)(x, 0, size); delete [] x; } static const char *kInvalidPoisonMessage = "invalid-poison-memory-range"; static const char *kInvalidUnpoisonMessage = "invalid-unpoison-memory-range"; TEST(AddressSanitizerInterface, DISABLED_InvalidPoisonAndUnpoisonCallsTest) { char *array = Ident((char*)malloc(120)); __asan_unpoison_memory_region(array, 120); // Try to unpoison not owned memory EXPECT_DEATH(__asan_unpoison_memory_region(array, 121), kInvalidUnpoisonMessage); EXPECT_DEATH(__asan_unpoison_memory_region(array - 1, 120), kInvalidUnpoisonMessage); __asan_poison_memory_region(array, 120); // Try to poison not owned memory. EXPECT_DEATH(__asan_poison_memory_region(array, 121), kInvalidPoisonMessage); EXPECT_DEATH(__asan_poison_memory_region(array - 1, 120), kInvalidPoisonMessage); free(array); } static void ErrorReportCallbackOneToZ(const char *report) { int report_len = strlen(report); ASSERT_EQ(6, write(2, "ABCDEF", 6)); ASSERT_EQ(report_len, write(2, report, report_len)); ASSERT_EQ(6, write(2, "ABCDEF", 6)); _exit(1); } TEST(AddressSanitizerInterface, SetErrorReportCallbackTest) { __asan_set_error_report_callback(ErrorReportCallbackOneToZ); EXPECT_DEATH(__asan_report_error(0, 0, 0, 0, true, 1), ASAN_PCRE_DOTALL "ABCDEF.*AddressSanitizer.*WRITE.*ABCDEF"); __asan_set_error_report_callback(NULL); } TEST(AddressSanitizerInterface, GetOwnershipStressTest) { std::vector pointers; std::vector sizes; const size_t kNumMallocs = 1 << 9; for (size_t i = 0; i < kNumMallocs; i++) { size_t size = i * 100 + 1; pointers.push_back((char*)malloc(size)); sizes.push_back(size); } for (size_t i = 0; i < 4000000; i++) { EXPECT_FALSE(__asan_get_ownership(&pointers)); EXPECT_FALSE(__asan_get_ownership((void*)0x1234)); size_t idx = i % kNumMallocs; EXPECT_TRUE(__asan_get_ownership(pointers[idx])); EXPECT_EQ(sizes[idx], __asan_get_allocated_size(pointers[idx])); } for (size_t i = 0, n = pointers.size(); i < n; i++) free(pointers[i]); }