//===-- asan_descriptions.cc ------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // // ASan functions for getting information about an address and/or printing it. //===----------------------------------------------------------------------===// #include "asan_descriptions.h" #include "asan_mapping.h" #include "asan_report.h" #include "asan_stack.h" #include "sanitizer_common/sanitizer_stackdepot.h" namespace __asan { AsanThreadIdAndName::AsanThreadIdAndName(AsanThreadContext *t) { Init(t->tid, t->name); } AsanThreadIdAndName::AsanThreadIdAndName(u32 tid) { if (tid == kInvalidTid) { Init(tid, ""); } else { asanThreadRegistry().CheckLocked(); AsanThreadContext *t = GetThreadContextByTidLocked(tid); Init(tid, t->name); } } void AsanThreadIdAndName::Init(u32 tid, const char *tname) { int len = internal_snprintf(name, sizeof(name), "T%d", tid); CHECK(((unsigned int)len) < sizeof(name)); if (tname[0] != '\0') internal_snprintf(&name[len], sizeof(name) - len, " (%s)", tname); } void DescribeThread(AsanThreadContext *context) { CHECK(context); asanThreadRegistry().CheckLocked(); // No need to announce the main thread. if (context->tid == 0 || context->announced) { return; } context->announced = true; InternalScopedString str(1024); str.append("Thread %s", AsanThreadIdAndName(context).c_str()); if (context->parent_tid == kInvalidTid) { str.append(" created by unknown thread\n"); Printf("%s", str.data()); return; } str.append(" created by %s here:\n", AsanThreadIdAndName(context->parent_tid).c_str()); Printf("%s", str.data()); StackDepotGet(context->stack_id).Print(); // Recursively described parent thread if needed. if (flags()->print_full_thread_history) { AsanThreadContext *parent_context = GetThreadContextByTidLocked(context->parent_tid); DescribeThread(parent_context); } } // Shadow descriptions static bool GetShadowKind(uptr addr, ShadowKind *shadow_kind) { CHECK(!AddrIsInMem(addr)); if (AddrIsInShadowGap(addr)) { *shadow_kind = kShadowKindGap; } else if (AddrIsInHighShadow(addr)) { *shadow_kind = kShadowKindHigh; } else if (AddrIsInLowShadow(addr)) { *shadow_kind = kShadowKindLow; } else { CHECK(0 && "Address is not in memory and not in shadow?"); return false; } return true; } bool DescribeAddressIfShadow(uptr addr) { ShadowAddressDescription descr; if (!GetShadowAddressInformation(addr, &descr)) return false; descr.Print(); return true; } bool GetShadowAddressInformation(uptr addr, ShadowAddressDescription *descr) { if (AddrIsInMem(addr)) return false; ShadowKind shadow_kind; if (!GetShadowKind(addr, &shadow_kind)) return false; if (shadow_kind != kShadowKindGap) descr->shadow_byte = *(u8 *)addr; descr->addr = addr; descr->kind = shadow_kind; return true; } // Heap descriptions static void GetAccessToHeapChunkInformation(ChunkAccess *descr, AsanChunkView chunk, uptr addr, uptr access_size) { descr->bad_addr = addr; if (chunk.AddrIsAtLeft(addr, access_size, &descr->offset)) { descr->access_type = kAccessTypeLeft; } else if (chunk.AddrIsAtRight(addr, access_size, &descr->offset)) { descr->access_type = kAccessTypeRight; if (descr->offset < 0) { descr->bad_addr -= descr->offset; descr->offset = 0; } } else if (chunk.AddrIsInside(addr, access_size, &descr->offset)) { descr->access_type = kAccessTypeInside; } else { descr->access_type = kAccessTypeUnknown; } descr->chunk_begin = chunk.Beg(); descr->chunk_size = chunk.UsedSize(); descr->user_requested_alignment = chunk.UserRequestedAlignment(); descr->alloc_type = chunk.GetAllocType(); } static void PrintHeapChunkAccess(uptr addr, const ChunkAccess &descr) { Decorator d; InternalScopedString str(4096); str.append("%s", d.Location()); switch (descr.access_type) { case kAccessTypeLeft: str.append("%p is located %zd bytes to the left of", (void *)descr.bad_addr, descr.offset); break; case kAccessTypeRight: str.append("%p is located %zd bytes to the right of", (void *)descr.bad_addr, descr.offset); break; case kAccessTypeInside: str.append("%p is located %zd bytes inside of", (void *)descr.bad_addr, descr.offset); break; case kAccessTypeUnknown: str.append( "%p is located somewhere around (this is AddressSanitizer bug!)", (void *)descr.bad_addr); } str.append(" %zu-byte region [%p,%p)\n", descr.chunk_size, (void *)descr.chunk_begin, (void *)(descr.chunk_begin + descr.chunk_size)); str.append("%s", d.Default()); Printf("%s", str.data()); } bool GetHeapAddressInformation(uptr addr, uptr access_size, HeapAddressDescription *descr) { AsanChunkView chunk = FindHeapChunkByAddress(addr); if (!chunk.IsValid()) { return false; } descr->addr = addr; GetAccessToHeapChunkInformation(&descr->chunk_access, chunk, addr, access_size); CHECK_NE(chunk.AllocTid(), kInvalidTid); descr->alloc_tid = chunk.AllocTid(); descr->alloc_stack_id = chunk.GetAllocStackId(); descr->free_tid = chunk.FreeTid(); if (descr->free_tid != kInvalidTid) descr->free_stack_id = chunk.GetFreeStackId(); return true; } static StackTrace GetStackTraceFromId(u32 id) { CHECK(id); StackTrace res = StackDepotGet(id); CHECK(res.trace); return res; } bool DescribeAddressIfHeap(uptr addr, uptr access_size) { HeapAddressDescription descr; if (!GetHeapAddressInformation(addr, access_size, &descr)) { Printf( "AddressSanitizer can not describe address in more detail " "(wild memory access suspected).\n"); return false; } descr.Print(); return true; } // Stack descriptions bool GetStackAddressInformation(uptr addr, uptr access_size, StackAddressDescription *descr) { AsanThread *t = FindThreadByStackAddress(addr); if (!t) return false; descr->addr = addr; descr->tid = t->tid(); // Try to fetch precise stack frame for this access. AsanThread::StackFrameAccess access; if (!t->GetStackFrameAccessByAddr(addr, &access)) { descr->frame_descr = nullptr; return true; } descr->offset = access.offset; descr->access_size = access_size; descr->frame_pc = access.frame_pc; descr->frame_descr = access.frame_descr; #if SANITIZER_PPC64V1 // On PowerPC64 ELFv1, the address of a function actually points to a // three-doubleword data structure with the first field containing // the address of the function's code. descr->frame_pc = *reinterpret_cast(descr->frame_pc); #endif descr->frame_pc += 16; return true; } static void PrintAccessAndVarIntersection(const StackVarDescr &var, uptr addr, uptr access_size, uptr prev_var_end, uptr next_var_beg) { uptr var_end = var.beg + var.size; uptr addr_end = addr + access_size; const char *pos_descr = nullptr; // If the variable [var.beg, var_end) is the nearest variable to the // current memory access, indicate it in the log. if (addr >= var.beg) { if (addr_end <= var_end) pos_descr = "is inside"; // May happen if this is a use-after-return. else if (addr < var_end) pos_descr = "partially overflows"; else if (addr_end <= next_var_beg && next_var_beg - addr_end >= addr - var_end) pos_descr = "overflows"; } else { if (addr_end > var.beg) pos_descr = "partially underflows"; else if (addr >= prev_var_end && addr - prev_var_end >= var.beg - addr_end) pos_descr = "underflows"; } InternalScopedString str(1024); str.append(" [%zd, %zd)", var.beg, var_end); // Render variable name. str.append(" '"); for (uptr i = 0; i < var.name_len; ++i) { str.append("%c", var.name_pos[i]); } str.append("'"); if (var.line > 0) { str.append(" (line %d)", var.line); } if (pos_descr) { Decorator d; // FIXME: we may want to also print the size of the access here, // but in case of accesses generated by memset it may be confusing. str.append("%s <== Memory access at offset %zd %s this variable%s\n", d.Location(), addr, pos_descr, d.Default()); } else { str.append("\n"); } Printf("%s", str.data()); } bool DescribeAddressIfStack(uptr addr, uptr access_size) { StackAddressDescription descr; if (!GetStackAddressInformation(addr, access_size, &descr)) return false; descr.Print(); return true; } // Global descriptions static void DescribeAddressRelativeToGlobal(uptr addr, uptr access_size, const __asan_global &g) { InternalScopedString str(4096); Decorator d; str.append("%s", d.Location()); if (addr < g.beg) { str.append("%p is located %zd bytes to the left", (void *)addr, g.beg - addr); } else if (addr + access_size > g.beg + g.size) { if (addr < g.beg + g.size) addr = g.beg + g.size; str.append("%p is located %zd bytes to the right", (void *)addr, addr - (g.beg + g.size)); } else { // Can it happen? str.append("%p is located %zd bytes inside", (void *)addr, addr - g.beg); } str.append(" of global variable '%s' defined in '", MaybeDemangleGlobalName(g.name)); PrintGlobalLocation(&str, g); str.append("' (0x%zx) of size %zu\n", g.beg, g.size); str.append("%s", d.Default()); PrintGlobalNameIfASCII(&str, g); Printf("%s", str.data()); } bool GetGlobalAddressInformation(uptr addr, uptr access_size, GlobalAddressDescription *descr) { descr->addr = addr; int globals_num = GetGlobalsForAddress(addr, descr->globals, descr->reg_sites, ARRAY_SIZE(descr->globals)); descr->size = globals_num; descr->access_size = access_size; return globals_num != 0; } bool DescribeAddressIfGlobal(uptr addr, uptr access_size, const char *bug_type) { GlobalAddressDescription descr; if (!GetGlobalAddressInformation(addr, access_size, &descr)) return false; descr.Print(bug_type); return true; } void ShadowAddressDescription::Print() const { Printf("Address %p is located in the %s area.\n", addr, ShadowNames[kind]); } void GlobalAddressDescription::Print(const char *bug_type) const { for (int i = 0; i < size; i++) { DescribeAddressRelativeToGlobal(addr, access_size, globals[i]); if (bug_type && 0 == internal_strcmp(bug_type, "initialization-order-fiasco") && reg_sites[i]) { Printf(" registered at:\n"); StackDepotGet(reg_sites[i]).Print(); } } } bool GlobalAddressDescription::PointsInsideTheSameVariable( const GlobalAddressDescription &other) const { if (size == 0 || other.size == 0) return false; for (uptr i = 0; i < size; i++) { const __asan_global &a = globals[i]; for (uptr j = 0; j < other.size; j++) { const __asan_global &b = other.globals[j]; if (a.beg == b.beg && a.beg <= addr && b.beg <= other.addr && (addr + access_size) < (a.beg + a.size) && (other.addr + other.access_size) < (b.beg + b.size)) return true; } } return false; } void StackAddressDescription::Print() const { Decorator d; Printf("%s", d.Location()); Printf("Address %p is located in stack of thread %s", addr, AsanThreadIdAndName(tid).c_str()); if (!frame_descr) { Printf("%s\n", d.Default()); return; } Printf(" at offset %zu in frame%s\n", offset, d.Default()); // Now we print the frame where the alloca has happened. // We print this frame as a stack trace with one element. // The symbolizer may print more than one frame if inlining was involved. // The frame numbers may be different than those in the stack trace printed // previously. That's unfortunate, but I have no better solution, // especially given that the alloca may be from entirely different place // (e.g. use-after-scope, or different thread's stack). Printf("%s", d.Default()); StackTrace alloca_stack(&frame_pc, 1); alloca_stack.Print(); InternalMmapVector vars; vars.reserve(16); if (!ParseFrameDescription(frame_descr, &vars)) { Printf( "AddressSanitizer can't parse the stack frame " "descriptor: |%s|\n", frame_descr); // 'addr' is a stack address, so return true even if we can't parse frame return; } uptr n_objects = vars.size(); // Report the number of stack objects. Printf(" This frame has %zu object(s):\n", n_objects); // Report all objects in this frame. for (uptr i = 0; i < n_objects; i++) { uptr prev_var_end = i ? vars[i - 1].beg + vars[i - 1].size : 0; uptr next_var_beg = i + 1 < n_objects ? vars[i + 1].beg : ~(0UL); PrintAccessAndVarIntersection(vars[i], offset, access_size, prev_var_end, next_var_beg); } Printf( "HINT: this may be a false positive if your program uses " "some custom stack unwind mechanism, swapcontext or vfork\n"); if (SANITIZER_WINDOWS) Printf(" (longjmp, SEH and C++ exceptions *are* supported)\n"); else Printf(" (longjmp and C++ exceptions *are* supported)\n"); DescribeThread(GetThreadContextByTidLocked(tid)); } void HeapAddressDescription::Print() const { PrintHeapChunkAccess(addr, chunk_access); asanThreadRegistry().CheckLocked(); AsanThreadContext *alloc_thread = GetThreadContextByTidLocked(alloc_tid); StackTrace alloc_stack = GetStackTraceFromId(alloc_stack_id); Decorator d; AsanThreadContext *free_thread = nullptr; if (free_tid != kInvalidTid) { free_thread = GetThreadContextByTidLocked(free_tid); Printf("%sfreed by thread %s here:%s\n", d.Allocation(), AsanThreadIdAndName(free_thread).c_str(), d.Default()); StackTrace free_stack = GetStackTraceFromId(free_stack_id); free_stack.Print(); Printf("%spreviously allocated by thread %s here:%s\n", d.Allocation(), AsanThreadIdAndName(alloc_thread).c_str(), d.Default()); } else { Printf("%sallocated by thread %s here:%s\n", d.Allocation(), AsanThreadIdAndName(alloc_thread).c_str(), d.Default()); } alloc_stack.Print(); DescribeThread(GetCurrentThread()); if (free_thread) DescribeThread(free_thread); DescribeThread(alloc_thread); } AddressDescription::AddressDescription(uptr addr, uptr access_size, bool shouldLockThreadRegistry) { if (GetShadowAddressInformation(addr, &data.shadow)) { data.kind = kAddressKindShadow; return; } if (GetHeapAddressInformation(addr, access_size, &data.heap)) { data.kind = kAddressKindHeap; return; } bool isStackMemory = false; if (shouldLockThreadRegistry) { ThreadRegistryLock l(&asanThreadRegistry()); isStackMemory = GetStackAddressInformation(addr, access_size, &data.stack); } else { isStackMemory = GetStackAddressInformation(addr, access_size, &data.stack); } if (isStackMemory) { data.kind = kAddressKindStack; return; } if (GetGlobalAddressInformation(addr, access_size, &data.global)) { data.kind = kAddressKindGlobal; return; } data.kind = kAddressKindWild; addr = 0; } void PrintAddressDescription(uptr addr, uptr access_size, const char *bug_type) { ShadowAddressDescription shadow_descr; if (GetShadowAddressInformation(addr, &shadow_descr)) { shadow_descr.Print(); return; } GlobalAddressDescription global_descr; if (GetGlobalAddressInformation(addr, access_size, &global_descr)) { global_descr.Print(bug_type); return; } StackAddressDescription stack_descr; if (GetStackAddressInformation(addr, access_size, &stack_descr)) { stack_descr.Print(); return; } HeapAddressDescription heap_descr; if (GetHeapAddressInformation(addr, access_size, &heap_descr)) { heap_descr.Print(); return; } // We exhausted our possibilities. Bail out. Printf( "AddressSanitizer can not describe address in more detail " "(wild memory access suspected).\n"); } } // namespace __asan