summaryrefslogtreecommitdiff
path: root/README.txt
diff options
context:
space:
mode:
Diffstat (limited to 'README.txt')
-rw-r--r--README.txt332
1 files changed, 0 insertions, 332 deletions
diff --git a/README.txt b/README.txt
index 1c08e7415..fc8843246 100644
--- a/README.txt
+++ b/README.txt
@@ -9,335 +9,3 @@ terms of the license agreement found in LICENSE.txt.
================================
-This is a replacement library for libgcc. Each function is contained
-in its own file. Each function has a corresponding unit test under
-test/Unit.
-
-A rudimentary script to test each file is in the file called
-test/Unit/test.
-
-Here is the specification for this library:
-
-http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
-
-Here is a synopsis of the contents of this library:
-
-typedef int si_int;
-typedef unsigned su_int;
-
-typedef long long di_int;
-typedef unsigned long long du_int;
-
-// Integral bit manipulation
-
-di_int __ashldi3(di_int a, si_int b); // a << b
-ti_int __ashlti3(ti_int a, si_int b); // a << b
-
-di_int __ashrdi3(di_int a, si_int b); // a >> b arithmetic (sign fill)
-ti_int __ashrti3(ti_int a, si_int b); // a >> b arithmetic (sign fill)
-di_int __lshrdi3(di_int a, si_int b); // a >> b logical (zero fill)
-ti_int __lshrti3(ti_int a, si_int b); // a >> b logical (zero fill)
-
-si_int __clzsi2(si_int a); // count leading zeros
-si_int __clzdi2(di_int a); // count leading zeros
-si_int __clzti2(ti_int a); // count leading zeros
-si_int __ctzsi2(si_int a); // count trailing zeros
-si_int __ctzdi2(di_int a); // count trailing zeros
-si_int __ctzti2(ti_int a); // count trailing zeros
-
-si_int __ffsdi2(di_int a); // find least significant 1 bit
-si_int __ffsti2(ti_int a); // find least significant 1 bit
-
-si_int __paritysi2(si_int a); // bit parity
-si_int __paritydi2(di_int a); // bit parity
-si_int __parityti2(ti_int a); // bit parity
-
-si_int __popcountsi2(si_int a); // bit population
-si_int __popcountdi2(di_int a); // bit population
-si_int __popcountti2(ti_int a); // bit population
-
-uint32_t __bswapsi2(uint32_t a); // a byteswapped, arm only
-uint64_t __bswapdi2(uint64_t a); // a byteswapped, arm only
-
-// Integral arithmetic
-
-di_int __negdi2 (di_int a); // -a
-ti_int __negti2 (ti_int a); // -a
-di_int __muldi3 (di_int a, di_int b); // a * b
-ti_int __multi3 (ti_int a, ti_int b); // a * b
-si_int __divsi3 (si_int a, si_int b); // a / b signed
-di_int __divdi3 (di_int a, di_int b); // a / b signed
-ti_int __divti3 (ti_int a, ti_int b); // a / b signed
-su_int __udivsi3 (su_int n, su_int d); // a / b unsigned
-du_int __udivdi3 (du_int a, du_int b); // a / b unsigned
-tu_int __udivti3 (tu_int a, tu_int b); // a / b unsigned
-si_int __modsi3 (si_int a, si_int b); // a % b signed
-di_int __moddi3 (di_int a, di_int b); // a % b signed
-ti_int __modti3 (ti_int a, ti_int b); // a % b signed
-su_int __umodsi3 (su_int a, su_int b); // a % b unsigned
-du_int __umoddi3 (du_int a, du_int b); // a % b unsigned
-tu_int __umodti3 (tu_int a, tu_int b); // a % b unsigned
-du_int __udivmoddi4(du_int a, du_int b, du_int* rem); // a / b, *rem = a % b unsigned
-tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem); // a / b, *rem = a % b unsigned
-su_int __udivmodsi4(su_int a, su_int b, su_int* rem); // a / b, *rem = a % b unsigned
-si_int __divmodsi4(si_int a, si_int b, si_int* rem); // a / b, *rem = a % b signed
-
-
-
-// Integral arithmetic with trapping overflow
-
-si_int __absvsi2(si_int a); // abs(a)
-di_int __absvdi2(di_int a); // abs(a)
-ti_int __absvti2(ti_int a); // abs(a)
-
-si_int __negvsi2(si_int a); // -a
-di_int __negvdi2(di_int a); // -a
-ti_int __negvti2(ti_int a); // -a
-
-si_int __addvsi3(si_int a, si_int b); // a + b
-di_int __addvdi3(di_int a, di_int b); // a + b
-ti_int __addvti3(ti_int a, ti_int b); // a + b
-
-si_int __subvsi3(si_int a, si_int b); // a - b
-di_int __subvdi3(di_int a, di_int b); // a - b
-ti_int __subvti3(ti_int a, ti_int b); // a - b
-
-si_int __mulvsi3(si_int a, si_int b); // a * b
-di_int __mulvdi3(di_int a, di_int b); // a * b
-ti_int __mulvti3(ti_int a, ti_int b); // a * b
-
-
-// Integral arithmetic which returns if overflow
-
-si_int __mulosi4(si_int a, si_int b, int* overflow); // a * b, overflow set to one if result not in signed range
-di_int __mulodi4(di_int a, di_int b, int* overflow); // a * b, overflow set to one if result not in signed range
-ti_int __muloti4(ti_int a, ti_int b, int* overflow); // a * b, overflow set to
- one if result not in signed range
-
-
-// Integral comparison: a < b -> 0
-// a == b -> 1
-// a > b -> 2
-
-si_int __cmpdi2 (di_int a, di_int b);
-si_int __cmpti2 (ti_int a, ti_int b);
-si_int __ucmpdi2(du_int a, du_int b);
-si_int __ucmpti2(tu_int a, tu_int b);
-
-// Integral / floating point conversion
-
-di_int __fixsfdi( float a);
-di_int __fixdfdi( double a);
-di_int __fixxfdi(long double a);
-
-ti_int __fixsfti( float a);
-ti_int __fixdfti( double a);
-ti_int __fixxfti(long double a);
-uint64_t __fixtfdi(long double input); // ppc only, doesn't match documentation
-
-su_int __fixunssfsi( float a);
-su_int __fixunsdfsi( double a);
-su_int __fixunsxfsi(long double a);
-
-du_int __fixunssfdi( float a);
-du_int __fixunsdfdi( double a);
-du_int __fixunsxfdi(long double a);
-
-tu_int __fixunssfti( float a);
-tu_int __fixunsdfti( double a);
-tu_int __fixunsxfti(long double a);
-uint64_t __fixunstfdi(long double input); // ppc only
-
-float __floatdisf(di_int a);
-double __floatdidf(di_int a);
-long double __floatdixf(di_int a);
-long double __floatditf(int64_t a); // ppc only
-
-float __floattisf(ti_int a);
-double __floattidf(ti_int a);
-long double __floattixf(ti_int a);
-
-float __floatundisf(du_int a);
-double __floatundidf(du_int a);
-long double __floatundixf(du_int a);
-long double __floatunditf(uint64_t a); // ppc only
-
-float __floatuntisf(tu_int a);
-double __floatuntidf(tu_int a);
-long double __floatuntixf(tu_int a);
-
-// Floating point raised to integer power
-
-float __powisf2( float a, si_int b); // a ^ b
-double __powidf2( double a, si_int b); // a ^ b
-long double __powixf2(long double a, si_int b); // a ^ b
-long double __powitf2(long double a, si_int b); // ppc only, a ^ b
-
-// Complex arithmetic
-
-// (a + ib) * (c + id)
-
- float _Complex __mulsc3( float a, float b, float c, float d);
- double _Complex __muldc3(double a, double b, double c, double d);
-long double _Complex __mulxc3(long double a, long double b,
- long double c, long double d);
-long double _Complex __multc3(long double a, long double b,
- long double c, long double d); // ppc only
-
-// (a + ib) / (c + id)
-
- float _Complex __divsc3( float a, float b, float c, float d);
- double _Complex __divdc3(double a, double b, double c, double d);
-long double _Complex __divxc3(long double a, long double b,
- long double c, long double d);
-long double _Complex __divtc3(long double a, long double b,
- long double c, long double d); // ppc only
-
-
-// Runtime support
-
-// __clear_cache() is used to tell process that new instructions have been
-// written to an address range. Necessary on processors that do not have
-// a unified instruction and data cache.
-void __clear_cache(void* start, void* end);
-
-// __enable_execute_stack() is used with nested functions when a trampoline
-// function is written onto the stack and that page range needs to be made
-// executable.
-void __enable_execute_stack(void* addr);
-
-// __gcc_personality_v0() is normally only called by the system unwinder.
-// C code (as opposed to C++) normally does not need a personality function
-// because there are no catch clauses or destructors to be run. But there
-// is a C language extension __attribute__((cleanup(func))) which marks local
-// variables as needing the cleanup function "func" to be run when the
-// variable goes out of scope. That includes when an exception is thrown,
-// so a personality handler is needed.
-_Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
- uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
- _Unwind_Context_t context);
-
-// for use with some implementations of assert() in <assert.h>
-void __eprintf(const char* format, const char* assertion_expression,
- const char* line, const char* file);
-
-
-
-// Power PC specific functions
-
-// There is no C interface to the saveFP/restFP functions. They are helper
-// functions called by the prolog and epilog of functions that need to save
-// a number of non-volatile float point registers.
-saveFP
-restFP
-
-// PowerPC has a standard template for trampoline functions. This function
-// generates a custom trampoline function with the specific realFunc
-// and localsPtr values.
-void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,
- const void* realFunc, void* localsPtr);
-
-// adds two 128-bit double-double precision values ( x + y )
-long double __gcc_qadd(long double x, long double y);
-
-// subtracts two 128-bit double-double precision values ( x - y )
-long double __gcc_qsub(long double x, long double y);
-
-// multiples two 128-bit double-double precision values ( x * y )
-long double __gcc_qmul(long double x, long double y);
-
-// divides two 128-bit double-double precision values ( x / y )
-long double __gcc_qdiv(long double a, long double b);
-
-
-// ARM specific functions
-
-// There is no C interface to the switch* functions. These helper functions
-// are only needed by Thumb1 code for efficient switch table generation.
-switch16
-switch32
-switch8
-switchu8
-
-// There is no C interface to the *_vfp_d8_d15_regs functions. There are
-// called in the prolog and epilog of Thumb1 functions. When the C++ ABI use
-// SJLJ for exceptions, each function with a catch clause or destuctors needs
-// to save and restore all registers in it prolog and epliog. But there is
-// no way to access vector and high float registers from thumb1 code, so the
-// compiler must add call outs to these helper functions in the prolog and
-// epilog.
-restore_vfp_d8_d15_regs
-save_vfp_d8_d15_regs
-
-
-// Note: long ago ARM processors did not have floating point hardware support.
-// Floating point was done in software and floating point parameters were
-// passed in integer registers. When hardware support was added for floating
-// point, new *vfp functions were added to do the same operations but with
-// floating point parameters in floating point registers.
-
-// Undocumented functions
-
-float __addsf3vfp(float a, float b); // Appears to return a + b
-double __adddf3vfp(double a, double b); // Appears to return a + b
-float __divsf3vfp(float a, float b); // Appears to return a / b
-double __divdf3vfp(double a, double b); // Appears to return a / b
-int __eqsf2vfp(float a, float b); // Appears to return one
- // iff a == b and neither is NaN.
-int __eqdf2vfp(double a, double b); // Appears to return one
- // iff a == b and neither is NaN.
-double __extendsfdf2vfp(float a); // Appears to convert from
- // float to double.
-int __fixdfsivfp(double a); // Appears to convert from
- // double to int.
-int __fixsfsivfp(float a); // Appears to convert from
- // float to int.
-unsigned int __fixunssfsivfp(float a); // Appears to convert from
- // float to unsigned int.
-unsigned int __fixunsdfsivfp(double a); // Appears to convert from
- // double to unsigned int.
-double __floatsidfvfp(int a); // Appears to convert from
- // int to double.
-float __floatsisfvfp(int a); // Appears to convert from
- // int to float.
-double __floatunssidfvfp(unsigned int a); // Appears to convert from
- // unisgned int to double.
-float __floatunssisfvfp(unsigned int a); // Appears to convert from
- // unisgned int to float.
-int __gedf2vfp(double a, double b); // Appears to return __gedf2
- // (a >= b)
-int __gesf2vfp(float a, float b); // Appears to return __gesf2
- // (a >= b)
-int __gtdf2vfp(double a, double b); // Appears to return __gtdf2
- // (a > b)
-int __gtsf2vfp(float a, float b); // Appears to return __gtsf2
- // (a > b)
-int __ledf2vfp(double a, double b); // Appears to return __ledf2
- // (a <= b)
-int __lesf2vfp(float a, float b); // Appears to return __lesf2
- // (a <= b)
-int __ltdf2vfp(double a, double b); // Appears to return __ltdf2
- // (a < b)
-int __ltsf2vfp(float a, float b); // Appears to return __ltsf2
- // (a < b)
-double __muldf3vfp(double a, double b); // Appears to return a * b
-float __mulsf3vfp(float a, float b); // Appears to return a * b
-int __nedf2vfp(double a, double b); // Appears to return __nedf2
- // (a != b)
-double __negdf2vfp(double a); // Appears to return -a
-float __negsf2vfp(float a); // Appears to return -a
-float __negsf2vfp(float a); // Appears to return -a
-double __subdf3vfp(double a, double b); // Appears to return a - b
-float __subsf3vfp(float a, float b); // Appears to return a - b
-float __truncdfsf2vfp(double a); // Appears to convert from
- // double to float.
-int __unorddf2vfp(double a, double b); // Appears to return __unorddf2
-int __unordsf2vfp(float a, float b); // Appears to return __unordsf2
-
-
-Preconditions are listed for each function at the definition when there are any.
-Any preconditions reflect the specification at
-http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
-
-Assumptions are listed in "int_lib.h", and in individual files. Where possible
-assumptions are checked at compile time.