summaryrefslogtreecommitdiff
path: root/lib/sanitizer_common/sanitizer_allocator_secondary.h
diff options
context:
space:
mode:
authorKostya Serebryany <kcc@google.com>2016-07-20 22:06:41 +0000
committerKostya Serebryany <kcc@google.com>2016-07-20 22:06:41 +0000
commitc700ae8755b6e14452c7a778ed1b2765ecbda207 (patch)
treed6b4a53530f6950d0ee9b524c4751980e927efe3 /lib/sanitizer_common/sanitizer_allocator_secondary.h
parent60a35292c6a1a7ac2df0bbfaf02532a994ed7c4e (diff)
[sanitizers] split sanitizer_allocator.h into a number of smaller .h files; NFC
git-svn-id: https://llvm.org/svn/llvm-project/compiler-rt/trunk@276195 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/sanitizer_common/sanitizer_allocator_secondary.h')
-rw-r--r--lib/sanitizer_common/sanitizer_allocator_secondary.h268
1 files changed, 268 insertions, 0 deletions
diff --git a/lib/sanitizer_common/sanitizer_allocator_secondary.h b/lib/sanitizer_common/sanitizer_allocator_secondary.h
new file mode 100644
index 000000000..383eccf06
--- /dev/null
+++ b/lib/sanitizer_common/sanitizer_allocator_secondary.h
@@ -0,0 +1,268 @@
+//===-- sanitizer_allocator_secondary.h -------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Part of the Sanitizer Allocator.
+//
+//===----------------------------------------------------------------------===//
+#ifndef SANITIZER_ALLOCATOR_H
+#error This file must be included inside sanitizer_allocator.h
+#endif
+
+// This class can (de)allocate only large chunks of memory using mmap/unmap.
+// The main purpose of this allocator is to cover large and rare allocation
+// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
+template <class MapUnmapCallback = NoOpMapUnmapCallback>
+class LargeMmapAllocator {
+ public:
+ void InitLinkerInitialized(bool may_return_null) {
+ page_size_ = GetPageSizeCached();
+ atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
+ }
+
+ void Init(bool may_return_null) {
+ internal_memset(this, 0, sizeof(*this));
+ InitLinkerInitialized(may_return_null);
+ }
+
+ void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
+ CHECK(IsPowerOfTwo(alignment));
+ uptr map_size = RoundUpMapSize(size);
+ if (alignment > page_size_)
+ map_size += alignment;
+ // Overflow.
+ if (map_size < size)
+ return ReturnNullOrDie();
+ uptr map_beg = reinterpret_cast<uptr>(
+ MmapOrDie(map_size, "LargeMmapAllocator"));
+ CHECK(IsAligned(map_beg, page_size_));
+ MapUnmapCallback().OnMap(map_beg, map_size);
+ uptr map_end = map_beg + map_size;
+ uptr res = map_beg + page_size_;
+ if (res & (alignment - 1)) // Align.
+ res += alignment - (res & (alignment - 1));
+ CHECK(IsAligned(res, alignment));
+ CHECK(IsAligned(res, page_size_));
+ CHECK_GE(res + size, map_beg);
+ CHECK_LE(res + size, map_end);
+ Header *h = GetHeader(res);
+ h->size = size;
+ h->map_beg = map_beg;
+ h->map_size = map_size;
+ uptr size_log = MostSignificantSetBitIndex(map_size);
+ CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
+ {
+ SpinMutexLock l(&mutex_);
+ uptr idx = n_chunks_++;
+ chunks_sorted_ = false;
+ CHECK_LT(idx, kMaxNumChunks);
+ h->chunk_idx = idx;
+ chunks_[idx] = h;
+ stats.n_allocs++;
+ stats.currently_allocated += map_size;
+ stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
+ stats.by_size_log[size_log]++;
+ stat->Add(AllocatorStatAllocated, map_size);
+ stat->Add(AllocatorStatMapped, map_size);
+ }
+ return reinterpret_cast<void*>(res);
+ }
+
+ void *ReturnNullOrDie() {
+ if (atomic_load(&may_return_null_, memory_order_acquire))
+ return nullptr;
+ ReportAllocatorCannotReturnNull();
+ }
+
+ void SetMayReturnNull(bool may_return_null) {
+ atomic_store(&may_return_null_, may_return_null, memory_order_release);
+ }
+
+ void Deallocate(AllocatorStats *stat, void *p) {
+ Header *h = GetHeader(p);
+ {
+ SpinMutexLock l(&mutex_);
+ uptr idx = h->chunk_idx;
+ CHECK_EQ(chunks_[idx], h);
+ CHECK_LT(idx, n_chunks_);
+ chunks_[idx] = chunks_[n_chunks_ - 1];
+ chunks_[idx]->chunk_idx = idx;
+ n_chunks_--;
+ chunks_sorted_ = false;
+ stats.n_frees++;
+ stats.currently_allocated -= h->map_size;
+ stat->Sub(AllocatorStatAllocated, h->map_size);
+ stat->Sub(AllocatorStatMapped, h->map_size);
+ }
+ MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
+ UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
+ }
+
+ uptr TotalMemoryUsed() {
+ SpinMutexLock l(&mutex_);
+ uptr res = 0;
+ for (uptr i = 0; i < n_chunks_; i++) {
+ Header *h = chunks_[i];
+ CHECK_EQ(h->chunk_idx, i);
+ res += RoundUpMapSize(h->size);
+ }
+ return res;
+ }
+
+ bool PointerIsMine(const void *p) {
+ return GetBlockBegin(p) != nullptr;
+ }
+
+ uptr GetActuallyAllocatedSize(void *p) {
+ return RoundUpTo(GetHeader(p)->size, page_size_);
+ }
+
+ // At least page_size_/2 metadata bytes is available.
+ void *GetMetaData(const void *p) {
+ // Too slow: CHECK_EQ(p, GetBlockBegin(p));
+ if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
+ Printf("%s: bad pointer %p\n", SanitizerToolName, p);
+ CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
+ }
+ return GetHeader(p) + 1;
+ }
+
+ void *GetBlockBegin(const void *ptr) {
+ uptr p = reinterpret_cast<uptr>(ptr);
+ SpinMutexLock l(&mutex_);
+ uptr nearest_chunk = 0;
+ // Cache-friendly linear search.
+ for (uptr i = 0; i < n_chunks_; i++) {
+ uptr ch = reinterpret_cast<uptr>(chunks_[i]);
+ if (p < ch) continue; // p is at left to this chunk, skip it.
+ if (p - ch < p - nearest_chunk)
+ nearest_chunk = ch;
+ }
+ if (!nearest_chunk)
+ return nullptr;
+ Header *h = reinterpret_cast<Header *>(nearest_chunk);
+ CHECK_GE(nearest_chunk, h->map_beg);
+ CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
+ CHECK_LE(nearest_chunk, p);
+ if (h->map_beg + h->map_size <= p)
+ return nullptr;
+ return GetUser(h);
+ }
+
+ // This function does the same as GetBlockBegin, but is much faster.
+ // Must be called with the allocator locked.
+ void *GetBlockBeginFastLocked(void *ptr) {
+ mutex_.CheckLocked();
+ uptr p = reinterpret_cast<uptr>(ptr);
+ uptr n = n_chunks_;
+ if (!n) return nullptr;
+ if (!chunks_sorted_) {
+ // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
+ SortArray(reinterpret_cast<uptr*>(chunks_), n);
+ for (uptr i = 0; i < n; i++)
+ chunks_[i]->chunk_idx = i;
+ chunks_sorted_ = true;
+ min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
+ max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
+ chunks_[n - 1]->map_size;
+ }
+ if (p < min_mmap_ || p >= max_mmap_)
+ return nullptr;
+ uptr beg = 0, end = n - 1;
+ // This loop is a log(n) lower_bound. It does not check for the exact match
+ // to avoid expensive cache-thrashing loads.
+ while (end - beg >= 2) {
+ uptr mid = (beg + end) / 2; // Invariant: mid >= beg + 1
+ if (p < reinterpret_cast<uptr>(chunks_[mid]))
+ end = mid - 1; // We are not interested in chunks_[mid].
+ else
+ beg = mid; // chunks_[mid] may still be what we want.
+ }
+
+ if (beg < end) {
+ CHECK_EQ(beg + 1, end);
+ // There are 2 chunks left, choose one.
+ if (p >= reinterpret_cast<uptr>(chunks_[end]))
+ beg = end;
+ }
+
+ Header *h = chunks_[beg];
+ if (h->map_beg + h->map_size <= p || p < h->map_beg)
+ return nullptr;
+ return GetUser(h);
+ }
+
+ void PrintStats() {
+ Printf("Stats: LargeMmapAllocator: allocated %zd times, "
+ "remains %zd (%zd K) max %zd M; by size logs: ",
+ stats.n_allocs, stats.n_allocs - stats.n_frees,
+ stats.currently_allocated >> 10, stats.max_allocated >> 20);
+ for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
+ uptr c = stats.by_size_log[i];
+ if (!c) continue;
+ Printf("%zd:%zd; ", i, c);
+ }
+ Printf("\n");
+ }
+
+ // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
+ // introspection API.
+ void ForceLock() {
+ mutex_.Lock();
+ }
+
+ void ForceUnlock() {
+ mutex_.Unlock();
+ }
+
+ // Iterate over all existing chunks.
+ // The allocator must be locked when calling this function.
+ void ForEachChunk(ForEachChunkCallback callback, void *arg) {
+ for (uptr i = 0; i < n_chunks_; i++)
+ callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
+ }
+
+ private:
+ static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
+ struct Header {
+ uptr map_beg;
+ uptr map_size;
+ uptr size;
+ uptr chunk_idx;
+ };
+
+ Header *GetHeader(uptr p) {
+ CHECK(IsAligned(p, page_size_));
+ return reinterpret_cast<Header*>(p - page_size_);
+ }
+ Header *GetHeader(const void *p) {
+ return GetHeader(reinterpret_cast<uptr>(p));
+ }
+
+ void *GetUser(Header *h) {
+ CHECK(IsAligned((uptr)h, page_size_));
+ return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
+ }
+
+ uptr RoundUpMapSize(uptr size) {
+ return RoundUpTo(size, page_size_) + page_size_;
+ }
+
+ uptr page_size_;
+ Header *chunks_[kMaxNumChunks];
+ uptr n_chunks_;
+ uptr min_mmap_, max_mmap_;
+ bool chunks_sorted_;
+ struct Stats {
+ uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
+ } stats;
+ atomic_uint8_t may_return_null_;
+ SpinMutex mutex_;
+};
+
+