// s390.cc -- s390 target support for gold. // Copyright (C) 2015-2018 Free Software Foundation, Inc. // Written by Marcin Koƛcielnicki . // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include #include "elfcpp.h" #include "dwarf.h" #include "parameters.h" #include "reloc.h" #include "s390.h" #include "object.h" #include "symtab.h" #include "layout.h" #include "output.h" #include "copy-relocs.h" #include "target.h" #include "target-reloc.h" #include "target-select.h" #include "tls.h" #include "gc.h" #include "icf.h" namespace { using namespace gold; // A class to handle the .got.plt section. template class Output_data_got_plt_s390 : public Output_section_data_build { public: Output_data_got_plt_s390(Layout* layout) : Output_section_data_build(size/8), layout_(layout) { } Output_data_got_plt_s390(Layout* layout, off_t data_size) : Output_section_data_build(data_size, size/8), layout_(layout) { } protected: // Write out the PLT data. void do_write(Output_file*); // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, "** GOT PLT"); } private: // A pointer to the Layout class, so that we can find the .dynamic // section when we write out the GOT PLT section. Layout* layout_; }; // A class to handle the PLT data. template class Output_data_plt_s390 : public Output_section_data { public: typedef Output_data_reloc Reloc_section; Output_data_plt_s390(Layout* layout, Output_data_got* got, Output_data_got_plt_s390* got_plt, Output_data_space* got_irelative) : Output_section_data(4), layout_(layout), irelative_rel_(NULL), got_(got), got_plt_(got_plt), got_irelative_(got_irelative), count_(0), irelative_count_(0), free_list_() { this->init(layout); } Output_data_plt_s390(Layout* layout, Output_data_got* got, Output_data_got_plt_s390* got_plt, Output_data_space* got_irelative, unsigned int plt_count) : Output_section_data((plt_count + 1) * plt_entry_size, 4, false), layout_(layout), irelative_rel_(NULL), got_(got), got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count), irelative_count_(0), free_list_() { this->init(layout); // Initialize the free list and reserve the first entry. this->free_list_.init((plt_count + 1) * plt_entry_size, false); this->free_list_.remove(0, plt_entry_size); } // Initialize the PLT section. void init(Layout* layout); // Add an entry to the PLT. void add_entry(Symbol_table*, Layout*, Symbol* gsym); // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. unsigned int add_local_ifunc_entry(Symbol_table*, Layout*, Sized_relobj_file*, unsigned int); // Add the relocation for a PLT entry. void add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int); // Return the .rela.plt section data. Reloc_section* rela_plt() { return this->rel_; } // Return where the IRELATIVE relocations should go in the PLT // relocations. Reloc_section* rela_irelative(Symbol_table*, Layout*); // Return whether we created a section for IRELATIVE relocations. bool has_irelative_section() const { return this->irelative_rel_ != NULL; } // Return the number of PLT entries. unsigned int entry_count() const { return this->count_ + this->irelative_count_; } // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() { return plt_entry_size; } // Return the size of a PLT entry. unsigned int get_plt_entry_size() const { return plt_entry_size; } // Reserve a slot in the PLT for an existing symbol in an incremental update. void reserve_slot(unsigned int plt_index) { this->free_list_.remove((plt_index + 1) * plt_entry_size, (plt_index + 2) * plt_entry_size); } // Return the PLT address to use for a global symbol. uint64_t address_for_global(const Symbol*); // Return the PLT address to use for a local symbol. uint64_t address_for_local(const Relobj*, unsigned int symndx); // Add .eh_frame information for the PLT. void add_eh_frame(Layout* layout) { (void)layout; layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size, plt_eh_frame_fde, plt_eh_frame_fde_size); } protected: // Fill in the first PLT entry. void fill_first_plt_entry(unsigned char* pov, typename elfcpp::Elf_types::Elf_Addr got_address, typename elfcpp::Elf_types::Elf_Addr plt_address); // Fill in a normal PLT entry. Returns the offset into the entry that // should be the initial GOT slot value. unsigned int fill_plt_entry(unsigned char* pov, typename elfcpp::Elf_types::Elf_Addr got_address, typename elfcpp::Elf_types::Elf_Addr plt_address, unsigned int got_offset, unsigned int plt_offset, unsigned int plt_rel_offset); void do_adjust_output_section(Output_section* os); // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _("** PLT")); } private: // Set the final size. void set_final_data_size(); // Write out the PLT data. void do_write(Output_file*); // A pointer to the Layout class, so that we can find the .dynamic // section when we write out the GOT PLT section. Layout* layout_; // The reloc section. Reloc_section* rel_; // The IRELATIVE relocs, if necessary. These must follow the // regular PLT relocations. Reloc_section* irelative_rel_; // The .got section. Output_data_got* got_; // The .got.plt section. Output_data_got_plt_s390* got_plt_; // The part of the .got.plt section used for IRELATIVE relocs. Output_data_space* got_irelative_; // The number of PLT entries. unsigned int count_; // Number of PLT entries with R_TILEGX_IRELATIVE relocs. These // follow the regular PLT entries. unsigned int irelative_count_; // List of available regions within the section, for incremental // update links. Free_list free_list_; // The size of an entry in the PLT. static const int plt_entry_size = 0x20; // The first entry in the PLT. static const unsigned char first_plt_entry_32_abs[plt_entry_size]; static const unsigned char first_plt_entry_32_pic[plt_entry_size]; static const unsigned char first_plt_entry_64[plt_entry_size]; // Other entries in the PLT for an executable. static const unsigned char plt_entry_32_abs[plt_entry_size]; static const unsigned char plt_entry_32_pic12[plt_entry_size]; static const unsigned char plt_entry_32_pic16[plt_entry_size]; static const unsigned char plt_entry_32_pic[plt_entry_size]; static const unsigned char plt_entry_64[plt_entry_size]; // The .eh_frame unwind information for the PLT. static const int plt_eh_frame_cie_size = 12; static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size]; static const int plt_eh_frame_fde_size = 12; static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size]; }; template class Target_s390 : public Sized_target { public: typedef Output_data_reloc Reloc_section; Target_s390() : Sized_target(&s390_info), got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL), global_offset_table_(NULL), rela_dyn_(NULL), rela_irelative_(NULL), copy_relocs_(elfcpp::R_390_COPY), got_mod_index_offset_(-1U), tls_base_symbol_defined_(false), layout_(NULL) { } // Scan the relocations to look for symbol adjustments. void gc_process_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Scan the relocations to look for symbol adjustments. void scan_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Finalize the sections. void do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); // Return the value to use for a dynamic which requires special // treatment. uint64_t do_dynsym_value(const Symbol*) const; // Relocate a section. void relocate_section(const Relocate_info*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr view_address, section_size_type view_size, const Reloc_symbol_changes*); // Scan the relocs during a relocatable link. void scan_relocatable_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs*); // Scan the relocs for --emit-relocs. void emit_relocs_scan(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_syms, Relocatable_relocs* rr); // Return a string used to fill a code section with nops. std::string do_code_fill(section_size_type length) const; // Emit relocations for a section. void relocate_relocs( const Relocate_info*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types::Elf_Off offset_in_output_section, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size); // Return whether SYM is defined by the ABI. bool do_is_defined_by_abi(const Symbol* sym) const { return strcmp(sym->name(), "__tls_get_offset") == 0; } // Return the PLT address to use for a global symbol. uint64_t do_plt_address_for_global(const Symbol* gsym) const { return this->plt_section()->address_for_global(gsym); } uint64_t do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const { return this->plt_section()->address_for_local(relobj, symndx); } // Return the offset to use for the GOT_INDX'th got entry which is // for a local tls symbol specified by OBJECT, SYMNDX. int64_t do_tls_offset_for_local(const Relobj* object, unsigned int symndx, unsigned int got_indx) const; // Return the offset to use for the GOT_INDX'th got entry which is // for global tls symbol GSYM. int64_t do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const; // This function should be defined in targets that can use relocation // types to determine (implemented in local_reloc_may_be_function_pointer // and global_reloc_may_be_function_pointer) // if a function's pointer is taken. ICF uses this in safe mode to only // fold those functions whose pointer is defintely not taken. bool do_can_check_for_function_pointers() const { return true; } // Return whether SYM is call to a non-split function. bool do_is_call_to_non_split(const Symbol* sym, const unsigned char* preloc, const unsigned char* view, section_size_type view_size) const; // Adjust -fsplit-stack code which calls non-split-stack code. void do_calls_non_split(Relobj* object, unsigned int shndx, section_offset_type fnoffset, section_size_type fnsize, const unsigned char* prelocs, size_t reloc_count, unsigned char* view, section_size_type view_size, std::string* from, std::string* to) const; // Return the size of the GOT section. section_size_type got_size() const { gold_assert(this->got_ != NULL); return this->got_->data_size(); } // Return the number of entries in the GOT. unsigned int got_entry_count() const { if (this->got_ == NULL) return 0; return this->got_size() / (size / 8); } // Return the number of entries in the PLT. unsigned int plt_entry_count() const; // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() const; // Return the size of each PLT entry. unsigned int plt_entry_size() const; // Create the GOT section for an incremental update. Output_data_got_base* init_got_plt_for_update(Symbol_table* symtab, Layout* layout, unsigned int got_count, unsigned int plt_count); // Reserve a GOT entry for a local symbol, and regenerate any // necessary dynamic relocations. void reserve_local_got_entry(unsigned int got_index, Sized_relobj* obj, unsigned int r_sym, unsigned int got_type); // Reserve a GOT entry for a global symbol, and regenerate any // necessary dynamic relocations. void reserve_global_got_entry(unsigned int got_index, Symbol* gsym, unsigned int got_type); // Register an existing PLT entry for a global symbol. void register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index, Symbol* gsym); // Force a COPY relocation for a given symbol. void emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t); // Apply an incremental relocation. void apply_relocation(const Relocate_info* relinfo, typename elfcpp::Elf_types::Elf_Addr r_offset, unsigned int r_type, typename elfcpp::Elf_types::Elf_Swxword r_addend, const Symbol* gsym, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr address, section_size_type view_size); private: // The class which scans relocations. class Scan { public: Scan() : issued_non_pic_error_(false) { } static inline int get_reference_flags(unsigned int r_type); inline void local(Symbol_table* symtab, Layout* layout, Target_s390* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, const elfcpp::Sym& lsym, bool is_discarded); inline void global(Symbol_table* symtab, Layout* layout, Target_s390* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, Symbol* gsym); inline bool local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout, Target_s390* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, const elfcpp::Sym& lsym); inline bool global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout, Target_s390* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, Symbol* gsym); private: static void unsupported_reloc_local(Sized_relobj_file*, unsigned int r_type); static void unsupported_reloc_global(Sized_relobj_file*, unsigned int r_type, Symbol*); void check_non_pic(Relobj*, unsigned int r_type); inline bool possible_function_pointer_reloc(unsigned int r_type); bool reloc_needs_plt_for_ifunc(Sized_relobj_file*, unsigned int r_type); // Whether we have issued an error about a non-PIC compilation. bool issued_non_pic_error_; }; // The class which implements relocation. class Relocate { public: // Do a relocation. Return false if the caller should not issue // any warnings about this relocation. inline bool relocate(const Relocate_info*, unsigned int, Target_s390*, Output_section*, size_t, const unsigned char*, const Sized_symbol*, const Symbol_value*, unsigned char*, typename elfcpp::Elf_types::Elf_Addr, section_size_type); private: // Do a TLS relocation. inline typename elfcpp::Elf_types::Elf_Addr relocate_tls(const Relocate_info*, Target_s390*, size_t relnum, const elfcpp::Rela&, unsigned int r_type, const Sized_symbol*, const Symbol_value*, unsigned char*, section_size_type); // Do a TLS General-Dynamic to Initial-Exec transition. inline void tls_gd_to_ie(const Relocate_info*, size_t relnum, const elfcpp::Rela&, unsigned char* view, section_size_type view_size); // Do a TLS General-Dynamic to Local-Exec transition. inline void tls_gd_to_le(const Relocate_info*, size_t relnum, const elfcpp::Rela&, unsigned char* view, section_size_type view_size); // Do a TLS Local-Dynamic to Local-Exec transition. inline void tls_ld_to_le(const Relocate_info*, size_t relnum, const elfcpp::Rela&, unsigned char* view, section_size_type view_size); // Do a TLS Initial-Exec to Local-Exec transition. static inline void tls_ie_to_le(const Relocate_info*, size_t relnum, const elfcpp::Rela&, unsigned char* view, section_size_type view_size); }; // Adjust TLS relocation type based on the options and whether this // is a local symbol. static tls::Tls_optimization optimize_tls_reloc(bool is_final, int r_type); // Get the GOT section. const Output_data_got* got_section() const { gold_assert(this->got_ != NULL); return this->got_; } // Get the GOT section, creating it if necessary. Output_data_got* got_section(Symbol_table*, Layout*); typename elfcpp::Elf_types::Elf_Addr got_address() const { gold_assert(this->got_ != NULL); return this->got_plt_->address(); } typename elfcpp::Elf_types::Elf_Addr got_main_offset() const { gold_assert(this->got_ != NULL); return this->got_->address() - this->got_address(); } // Create the PLT section. void make_plt_section(Symbol_table* symtab, Layout* layout); // Create a PLT entry for a global symbol. void make_plt_entry(Symbol_table*, Layout*, Symbol*); // Create a PLT entry for a local STT_GNU_IFUNC symbol. void make_local_ifunc_plt_entry(Symbol_table*, Layout*, Sized_relobj_file* relobj, unsigned int local_sym_index); // Create a GOT entry for the TLS module index. unsigned int got_mod_index_entry(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object); // Get the PLT section. Output_data_plt_s390* plt_section() const { gold_assert(this->plt_ != NULL); return this->plt_; } // Get the dynamic reloc section, creating it if necessary. Reloc_section* rela_dyn_section(Layout*); // Get the section to use for IRELATIVE relocations. Reloc_section* rela_irelative_section(Layout*); // Add a potential copy relocation. void copy_reloc(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int shndx, Output_section* output_section, Symbol* sym, const elfcpp::Rela& reloc) { unsigned int r_type = elfcpp::elf_r_type(reloc.get_r_info()); this->copy_relocs_.copy_reloc(symtab, layout, symtab->get_sized_symbol(sym), object, shndx, output_section, r_type, reloc.get_r_offset(), reloc.get_r_addend(), this->rela_dyn_section(layout)); } // A function for targets to call. Return whether BYTES/LEN matches // VIEW/VIEW_SIZE at OFFSET. Like the one in Target, but takes // an unsigned char * parameter. bool match_view_u(const unsigned char* view, section_size_type view_size, section_offset_type offset, const unsigned char* bytes, size_t len) const { return this->match_view(view, view_size, offset, reinterpret_cast(bytes), len); } // Information about this specific target which we pass to the // general Target structure. static Target::Target_info s390_info; // The types of GOT entries needed for this platform. // These values are exposed to the ABI in an incremental link. // Do not renumber existing values without changing the version // number of the .gnu_incremental_inputs section. enum Got_type { GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair }; // The GOT section. Output_data_got* got_; // The PLT section. Output_data_plt_s390* plt_; // The GOT PLT section. Output_data_got_plt_s390* got_plt_; // The GOT section for IRELATIVE relocations. Output_data_space* got_irelative_; // The _GLOBAL_OFFSET_TABLE_ symbol. Symbol* global_offset_table_; // The dynamic reloc section. Reloc_section* rela_dyn_; // The section to use for IRELATIVE relocs. Reloc_section* rela_irelative_; // Relocs saved to avoid a COPY reloc. Copy_relocs copy_relocs_; // Offset of the GOT entry for the TLS module index. unsigned int got_mod_index_offset_; // True if the _TLS_MODULE_BASE_ symbol has been defined. bool tls_base_symbol_defined_; // For use in do_tls_offset_for_* Layout *layout_; // Code sequences for -fsplit-stack matching. static const unsigned char ss_code_bras_8[]; static const unsigned char ss_code_l_basr[]; static const unsigned char ss_code_a_basr[]; static const unsigned char ss_code_larl[]; static const unsigned char ss_code_brasl[]; static const unsigned char ss_code_jg[]; static const unsigned char ss_code_jgl[]; // Variable code sequence matchers for -fsplit-stack. bool ss_match_st_r14(unsigned char* view, section_size_type view_size, section_offset_type *offset) const; bool ss_match_l_r14(unsigned char* view, section_size_type view_size, section_offset_type *offset) const; bool ss_match_mcount(unsigned char* view, section_size_type view_size, section_offset_type *offset) const; bool ss_match_ear(unsigned char* view, section_size_type view_size, section_offset_type *offset) const; bool ss_match_c(unsigned char* view, section_size_type view_size, section_offset_type *offset) const; bool ss_match_l(unsigned char* view, section_size_type view_size, section_offset_type *offset, int *guard_reg) const; bool ss_match_ahi(unsigned char* view, section_size_type view_size, section_offset_type *offset, int guard_reg, uint32_t *arg) const; bool ss_match_alfi(unsigned char* view, section_size_type view_size, section_offset_type *offset, int guard_reg, uint32_t *arg) const; bool ss_match_cr(unsigned char* view, section_size_type view_size, section_offset_type *offset, int guard_reg) const; }; template<> Target::Target_info Target_s390<32>::s390_info = { 32, // size true, // is_big_endian elfcpp::EM_S390, // machine_code false, // has_make_symbol false, // has_resolve true, // has_code_fill true, // is_default_stack_executable true, // can_icf_inline_merge_sections '\0', // wrap_char "/lib/ld.so.1", // dynamic_linker 0x00400000, // default_text_segment_address 4 * 1024, // abi_pagesize (overridable by -z max-page-size) 4 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start", // entry_symbol_name 32, // hash_entry_size }; template<> Target::Target_info Target_s390<64>::s390_info = { 64, // size true, // is_big_endian elfcpp::EM_S390, // machine_code false, // has_make_symbol false, // has_resolve true, // has_code_fill true, // is_default_stack_executable true, // can_icf_inline_merge_sections '\0', // wrap_char "/lib/ld64.so.1", // dynamic_linker 0x80000000ll, // default_text_segment_address 4 * 1024, // abi_pagesize (overridable by -z max-page-size) 4 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start", // entry_symbol_name 64, // hash_entry_size }; template class S390_relocate_functions { public: enum Overflow_check { CHECK_NONE, CHECK_SIGNED, CHECK_UNSIGNED, CHECK_BITFIELD, CHECK_LOW_INSN, CHECK_HIGH_INSN }; enum Status { STATUS_OK, STATUS_OVERFLOW }; private: typedef S390_relocate_functions This; typedef typename elfcpp::Elf_types::Elf_Addr Address; template static inline bool has_overflow_signed(Address value) { // limit = 1 << (valsize - 1) without shift count exceeding size of type Address limit = static_cast
(1) << ((valsize - 1) >> 1); limit <<= ((valsize - 1) >> 1); limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1)); return value + limit > (limit << 1) - 1; } template static inline bool has_overflow_unsigned(Address value) { Address limit = static_cast
(1) << ((valsize - 1) >> 1); limit <<= ((valsize - 1) >> 1); limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1)); return value > (limit << 1) - 1; } template static inline void rela(unsigned char* view, Address mask, Address value) { typedef typename elfcpp::Swap::Valtype Valtype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap::readval(view); val &= ~mask; value &= mask; elfcpp::Swap::writeval(wv, val | value); } public: // R_390_12, R_390_GOT12, R_390_GOTPLT12, R_390_GOTIE12 static inline Status rela12(unsigned char* view, Address value) { if (This::template has_overflow_unsigned<12>(value)) return STATUS_OVERFLOW; This::template rela<16>(view, 0x0fff, value); return STATUS_OK; } // R_390_16, R_390_GOT16, R_390_GOTPLT16, R_390_GOTOFF16, R_390_PLTOFF16 static inline Status rela16(unsigned char* view, Address value) { if (This::template has_overflow_signed<16>(value)) return STATUS_OVERFLOW; This::template rela<16>(view, 0xffff, value); return STATUS_OK; } // R_390_20, R_390_GOT20, R_390_GOTPLT20, R_390_GOTIE20 static inline Status rela20(unsigned char* view, Address value) { if (This::template has_overflow_signed<20>(value)) return STATUS_OVERFLOW; This::template rela<16>(view, 0x0fff, value); This::template rela<16>(view + 2, 0xff00, value >> (12 - 8)); return STATUS_OK; } // R_390_PC12DBL, R_390_PLT12DBL static inline Status pcrela12dbl(unsigned char* view, Address value, Address address) { value -= address; if ((value & 1) != 0) return STATUS_OVERFLOW; if (This::template has_overflow_signed<13>(value)) return STATUS_OVERFLOW; value >>= 1; This::template rela<16>(view, 0x0fff, value); return STATUS_OK; } // R_390_PC16DBL, R_390_PLT16DBL static inline Status pcrela16dbl(unsigned char* view, Address value, Address address) { value -= address; if ((value & 1) != 0) return STATUS_OVERFLOW; if (This::template has_overflow_signed<17>(value)) return STATUS_OVERFLOW; value >>= 1; This::template rela<16>(view, 0xffff, value); return STATUS_OK; } // R_390_PC24DBL, R_390_PLT24DBL static inline Status pcrela24dbl(unsigned char* view, Address value, Address address) { value -= address; if ((value & 1) != 0) return STATUS_OVERFLOW; if (This::template has_overflow_signed<25>(value)) return STATUS_OVERFLOW; value >>= 1; // Swap doesn't take 24-bit fields well... This::template rela<8>(view, 0xff, value >> 16); This::template rela<16>(view + 1, 0xffff, value); return STATUS_OK; } // R_390_PC32DBL, R_390_PLT32DBL, R_390_GOTPCDBL, R_390_GOTENT, R_390_GOTPLTENT static inline Status pcrela32dbl(unsigned char* view, Address value, Address address) { Address reloc = value - address; if ((reloc & 1) != 0) { gold_warning(_("R_390_PC32DBL target misaligned at %llx"), (long long)address); // Wait for a fix for https://sourceware.org/bugzilla/show_bug.cgi?id=18960 // return STATUS_OVERFLOW; } if (This::template has_overflow_signed<33>(reloc)) return STATUS_OVERFLOW; reloc >>= 1; if (value < address && size == 32) reloc |= 0x80000000; This::template rela<32>(view, 0xffffffff, reloc); return STATUS_OK; } }; // Initialize the PLT section. template void Output_data_plt_s390::init(Layout* layout) { this->rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rel_, ORDER_DYNAMIC_PLT_RELOCS, false); } template void Output_data_plt_s390::do_adjust_output_section(Output_section* os) { os->set_entsize(plt_entry_size); } // Add an entry to the PLT. template void Output_data_plt_s390::add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym) { gold_assert(!gsym->has_plt_offset()); unsigned int plt_index; off_t plt_offset; section_offset_type got_offset; unsigned int* pcount; unsigned int offset; unsigned int reserved; Output_section_data_build* got; if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) { pcount = &this->irelative_count_; offset = 0; reserved = 0; got = this->got_irelative_; } else { pcount = &this->count_; offset = 1; reserved = 3; got = this->got_plt_; } if (!this->is_data_size_valid()) { // Note that when setting the PLT offset for a non-IRELATIVE // entry we skip the initial reserved PLT entry. plt_index = *pcount + offset; plt_offset = plt_index * plt_entry_size; ++*pcount; got_offset = (plt_index - offset + reserved) * size / 8; gold_assert(got_offset == got->current_data_size()); // Every PLT entry needs a GOT entry which points back to the PLT // entry (this will be changed by the dynamic linker, normally // lazily when the function is called). got->set_current_data_size(got_offset + size / 8); } else { // FIXME: This is probably not correct for IRELATIVE relocs. // For incremental updates, find an available slot. plt_offset = this->free_list_.allocate(plt_entry_size, plt_entry_size, 0); if (plt_offset == -1) gold_fallback(_("out of patch space (PLT);" " relink with --incremental-full")); // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset // can be calculated from the PLT index, adjusting for the three // reserved entries at the beginning of the GOT. plt_index = plt_offset / plt_entry_size - 1; got_offset = (plt_index - offset + reserved) * size / 8; } gsym->set_plt_offset(plt_offset); // Every PLT entry needs a reloc. this->add_relocation(symtab, layout, gsym, got_offset); // Note that we don't need to save the symbol. The contents of the // PLT are independent of which symbols are used. The symbols only // appear in the relocations. } // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return // the PLT offset. template unsigned int Output_data_plt_s390::add_local_ifunc_entry( Symbol_table* symtab, Layout* layout, Sized_relobj_file* relobj, unsigned int local_sym_index) { unsigned int plt_offset = this->irelative_count_ * plt_entry_size; ++this->irelative_count_; section_offset_type got_offset = this->got_irelative_->current_data_size(); // Every PLT entry needs a GOT entry which points back to the PLT // entry. this->got_irelative_->set_current_data_size(got_offset + size / 8); // Every PLT entry needs a reloc. Reloc_section* rela = this->rela_irelative(symtab, layout); rela->add_symbolless_local_addend(relobj, local_sym_index, elfcpp::R_390_IRELATIVE, this->got_irelative_, got_offset, 0); return plt_offset; } // Add the relocation for a PLT entry. template void Output_data_plt_s390::add_relocation(Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset) { if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) { Reloc_section* rela = this->rela_irelative(symtab, layout); rela->add_symbolless_global_addend(gsym, elfcpp::R_390_IRELATIVE, this->got_irelative_, got_offset, 0); } else { gsym->set_needs_dynsym_entry(); this->rel_->add_global(gsym, elfcpp::R_390_JMP_SLOT, this->got_plt_, got_offset, 0); } } // Return where the IRELATIVE relocations should go in the PLT. These // follow the JUMP_SLOT and the TLSDESC relocations. template typename Output_data_plt_s390::Reloc_section* Output_data_plt_s390::rela_irelative(Symbol_table* symtab, Layout* layout) { if (this->irelative_rel_ == NULL) { this->irelative_rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->irelative_rel_, ORDER_DYNAMIC_PLT_RELOCS, false); gold_assert(this->irelative_rel_->output_section() == this->rel_->output_section()); if (parameters->doing_static_link()) { // A statically linked executable will only have a .rela.plt // section to hold R_390_IRELATIVE relocs for // STT_GNU_IFUNC symbols. The library will use these // symbols to locate the IRELATIVE relocs at program startup // time. symtab->define_in_output_data("__rela_iplt_start", NULL, Symbol_table::PREDEFINED, this->irelative_rel_, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, false, true); symtab->define_in_output_data("__rela_iplt_end", NULL, Symbol_table::PREDEFINED, this->irelative_rel_, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, true, true); } } return this->irelative_rel_; } // Return the PLT address to use for a global symbol. template uint64_t Output_data_plt_s390::address_for_global(const Symbol* gsym) { uint64_t offset = 0; if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) offset = (this->count_ + 1) * plt_entry_size; return this->address() + offset + gsym->plt_offset(); } // Return the PLT address to use for a local symbol. These are always // IRELATIVE relocs. template uint64_t Output_data_plt_s390::address_for_local(const Relobj* object, unsigned int r_sym) { return (this->address() + (this->count_ + 1) * plt_entry_size + object->local_plt_offset(r_sym)); } // Set the final size. template void Output_data_plt_s390::set_final_data_size() { unsigned int count = this->count_ + this->irelative_count_; this->set_data_size((count + 1) * plt_entry_size); } template const unsigned char Output_data_plt_s390::first_plt_entry_32_abs[plt_entry_size] = { 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15) 0x0d, 0x10, // basr %r1, %r0 0x58, 0x10, 0x10, 0x12, // l %r1, 18(%r1) 0xd2, 0x03, 0xf0, 0x18, 0x10, 0x04, // mvc 24(4,%r15), 4(%r1) 0x58, 0x10, 0x10, 0x08, // l %r1, 8(%r1) 0x07, 0xf1, // br %r1 0x00, 0x00, // padding 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_ (to fill) 0x00, 0x00, 0x00, 0x00, // padding }; template const unsigned char Output_data_plt_s390::first_plt_entry_32_pic[plt_entry_size] = { 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15) 0x58, 0x10, 0xc0, 0x04, // l %r1, 4(%r12) 0x50, 0x10, 0xf0, 0x18, // st %r1, 24(%r15) 0x58, 0x10, 0xc0, 0x08, // l %r1, 8(%r12) 0x07, 0xf1, // br %r1 0x00, 0x00, // padding 0x00, 0x00, 0x00, 0x00, // padding 0x00, 0x00, 0x00, 0x00, // padding 0x00, 0x00, 0x00, 0x00, // padding }; template const unsigned char Output_data_plt_s390::first_plt_entry_64[plt_entry_size] = { 0xe3, 0x10, 0xf0, 0x38, 0x00, 0x24, // stg %r1, 56(%r15) 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_ (to fill) 0xd2, 0x07, 0xf0, 0x30, 0x10, 0x08, // mvc 48(8,%r15), 8(%r1) 0xe3, 0x10, 0x10, 0x10, 0x00, 0x04, // lg %r1, 16(%r1) 0x07, 0xf1, // br %r1 0x07, 0x00, // nopr 0x07, 0x00, // nopr 0x07, 0x00, // nopr }; template void Output_data_plt_s390::fill_first_plt_entry( unsigned char* pov, typename elfcpp::Elf_types::Elf_Addr got_address, typename elfcpp::Elf_types::Elf_Addr plt_address) { if (size == 64) { memcpy(pov, first_plt_entry_64, plt_entry_size); S390_relocate_functions::pcrela32dbl(pov + 8, got_address, (plt_address + 6)); } else if (!parameters->options().output_is_position_independent()) { memcpy(pov, first_plt_entry_32_abs, plt_entry_size); elfcpp::Swap<32, true>::writeval(pov + 24, got_address); } else { memcpy(pov, first_plt_entry_32_pic, plt_entry_size); } } template const unsigned char Output_data_plt_s390::plt_entry_32_abs[plt_entry_size] = { // first part 0x0d, 0x10, // basr %r1, %r0 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1) 0x58, 0x10, 0x10, 0x00, // l %r1, 0(%r1) 0x07, 0xf1, // br %r1 // second part 0x0d, 0x10, // basr %r1, %r0 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1) 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill) 0x00, 0x00, // padding 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_+sym@gotplt (to fill) 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill) }; template const unsigned char Output_data_plt_s390::plt_entry_32_pic12[plt_entry_size] = { // first part 0x58, 0x10, 0xc0, 0x00, // l %r1, sym@gotplt(%r12) (to fill) 0x07, 0xf1, // br %r1 0x00, 0x00, // padding 0x00, 0x00, 0x00, 0x00, // padding // second part 0x0d, 0x10, // basr %r1, %r0 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1) 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill) 0x00, 0x00, // padding 0x00, 0x00, 0x00, 0x00, // padding 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill) }; template const unsigned char Output_data_plt_s390::plt_entry_32_pic16[plt_entry_size] = { // first part 0xa7, 0x18, 0x00, 0x00, // lhi %r1, sym@gotplt (to fill) 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12) 0x07, 0xf1, // br %r1 0x00, 0x00, // padding // second part 0x0d, 0x10, // basr %r1, %r0 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1) 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill) 0x00, 0x00, // padding 0x00, 0x00, 0x00, 0x00, // padding 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill) }; template const unsigned char Output_data_plt_s390::plt_entry_32_pic[plt_entry_size] = { // first part 0x0d, 0x10, // basr %r1, %r0 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1) 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12) 0x07, 0xf1, // br %r1 // second part 0x0d, 0x10, // basr %r1, %r0 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1) 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill) 0x00, 0x00, // padding 0x00, 0x00, 0x00, 0x00, // sym@gotplt (to fill) 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill) }; template const unsigned char Output_data_plt_s390::plt_entry_64[plt_entry_size] = { // first part 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_+off (to fill) 0xe3, 0x10, 0x10, 0x00, 0x00, 0x04, // lg %r1, 0(%r1) 0x07, 0xf1, // br %r1 // second part 0x0d, 0x10, // basr %r1, %r0 0xe3, 0x10, 0x10, 0x0c, 0x00, 0x14, // lgf %r1, 12(%r1) 0xc0, 0xf4, 0x00, 0x00, 0x00, 0x00, // jg first_plt_entry (to fill) 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill) }; template unsigned int Output_data_plt_s390::fill_plt_entry( unsigned char* pov, typename elfcpp::Elf_types::Elf_Addr got_address, typename elfcpp::Elf_types::Elf_Addr plt_address, unsigned int got_offset, unsigned int plt_offset, unsigned int plt_rel_offset) { if (size == 64) { memcpy(pov, plt_entry_64, plt_entry_size); S390_relocate_functions::pcrela32dbl(pov + 2, got_address + got_offset, plt_address + plt_offset); S390_relocate_functions::pcrela32dbl(pov + 24, plt_address, plt_address + plt_offset + 22); } else { if (!parameters->options().output_is_position_independent()) { memcpy(pov, plt_entry_32_abs, plt_entry_size); elfcpp::Swap<32, true>::writeval(pov + 24, got_address + got_offset); } else { if (got_offset < 0x1000) { memcpy(pov, plt_entry_32_pic12, plt_entry_size); S390_relocate_functions::rela12(pov + 2, got_offset); } else if (got_offset < 0x8000) { memcpy(pov, plt_entry_32_pic16, plt_entry_size); S390_relocate_functions::rela16(pov + 2, got_offset); } else { memcpy(pov, plt_entry_32_pic, plt_entry_size); elfcpp::Swap<32, true>::writeval(pov + 24, got_offset); } } typename elfcpp::Elf_types::Elf_Addr target = plt_address; if (plt_offset >= 0x10000) { // Would overflow pcrela16dbl - aim at the farthest previous jump // we can reach. if (plt_offset > 0x10000) { // Use the full range of pcrel16dbl. target = plt_address + plt_offset - 0x10000 + 18; } else { // if plt_offset is exactly 0x10000, the above would aim at 18th byte // of first_plt_entry, which doesn't have the jump back like the others. // Aim at the next entry instead. target = plt_address + plt_offset - 0xffe0 + 18; } } S390_relocate_functions::pcrela16dbl(pov + 20, target, plt_address + plt_offset + 18); } elfcpp::Swap<32, true>::writeval(pov + 28, plt_rel_offset); if (size == 64) return 14; else return 12; } // The .eh_frame unwind information for the PLT. template<> const unsigned char Output_data_plt_s390<32>::plt_eh_frame_cie[plt_eh_frame_cie_size] = { 1, // CIE version. 'z', // Augmentation: augmentation size included. 'R', // Augmentation: FDE encoding included. '\0', // End of augmentation string. 1, // Code alignment factor. 0x7c, // Data alignment factor. 14, // Return address column. 1, // Augmentation size. (elfcpp::DW_EH_PE_pcrel // FDE encoding. | elfcpp::DW_EH_PE_sdata4), elfcpp::DW_CFA_def_cfa, 15, 0x60, // DW_CFA_def_cfa: r15 ofs 0x60. }; template<> const unsigned char Output_data_plt_s390<64>::plt_eh_frame_cie[plt_eh_frame_cie_size] = { 1, // CIE version. 'z', // Augmentation: augmentation size included. 'R', // Augmentation: FDE encoding included. '\0', // End of augmentation string. 1, // Code alignment factor. 0x78, // Data alignment factor. 14, // Return address column. 1, // Augmentation size. (elfcpp::DW_EH_PE_pcrel // FDE encoding. | elfcpp::DW_EH_PE_sdata4), elfcpp::DW_CFA_def_cfa, 15, 0xa0, // DW_CFA_def_cfa: r15 ofs 0xa0. }; template const unsigned char Output_data_plt_s390::plt_eh_frame_fde[plt_eh_frame_fde_size] = { 0, 0, 0, 0, // Replaced with offset to .plt. 0, 0, 0, 0, // Replaced with size of .plt. 0, // Augmentation size. elfcpp::DW_CFA_nop, elfcpp::DW_CFA_nop, elfcpp::DW_CFA_nop }; // Write out the PLT. This uses the hand-coded instructions above, // and adjusts them as needed. template void Output_data_plt_s390::do_write(Output_file* of) { const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); const off_t got_file_offset = this->got_plt_->offset(); gold_assert(parameters->incremental_update() || (got_file_offset + this->got_plt_->data_size() == this->got_irelative_->offset())); const section_size_type got_size = convert_to_section_size_type(this->got_plt_->data_size() + this->got_irelative_->data_size()); unsigned char* const got_view = of->get_output_view(got_file_offset, got_size); unsigned char* pov = oview; // The base address of the .plt section. typename elfcpp::Elf_types::Elf_Addr plt_address = this->address(); // The base address of the PLT portion of the .got section, // which is where the GOT pointer will point, and where the // three reserved GOT entries are located. typename elfcpp::Elf_types::Elf_Addr got_address = this->got_plt_->address(); this->fill_first_plt_entry(pov, got_address, plt_address); pov += this->get_plt_entry_size(); unsigned char* got_pov = got_view; const int rel_size = elfcpp::Elf_sizes::rela_size; unsigned int plt_offset = this->get_plt_entry_size(); unsigned int plt_rel_offset = 0; unsigned int got_offset = 3 * size / 8; const unsigned int count = this->count_ + this->irelative_count_; // The first three entries in the GOT are reserved, and are written // by Output_data_got_plt_s390::do_write. got_pov += 3 * size / 8; for (unsigned int plt_index = 0; plt_index < count; ++plt_index, pov += plt_entry_size, got_pov += size / 8, plt_offset += plt_entry_size, plt_rel_offset += rel_size, got_offset += size / 8) { // Set and adjust the PLT entry itself. unsigned int lazy_offset = this->fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset, plt_rel_offset); // Set the entry in the GOT. elfcpp::Swap::writeval(got_pov, plt_address + plt_offset + lazy_offset); } gold_assert(static_cast(pov - oview) == oview_size); gold_assert(static_cast(got_pov - got_view) == got_size); of->write_output_view(offset, oview_size, oview); of->write_output_view(got_file_offset, got_size, got_view); } // Get the GOT section, creating it if necessary. template Output_data_got* Target_s390::got_section(Symbol_table* symtab, Layout* layout) { if (this->got_ == NULL) { gold_assert(symtab != NULL && layout != NULL); // When using -z now, we can treat .got as a relro section. // Without -z now, it is modified after program startup by lazy // PLT relocations. bool is_got_relro = parameters->options().now(); Output_section_order got_order = (is_got_relro ? ORDER_RELRO_LAST : ORDER_DATA); // The old GNU linker creates a .got.plt section. We just // create another set of data in the .got section. Note that we // always create a PLT if we create a GOT, although the PLT // might be empty. this->got_plt_ = new Output_data_got_plt_s390(layout); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_plt_, got_order, is_got_relro); // The first three entries are reserved. this->got_plt_->set_current_data_size(3 * size / 8); // If there are any IRELATIVE relocations, they get GOT entries // in .got.plt after the jump slot entries. this->got_irelative_ = new Output_data_space(size / 8, "** GOT IRELATIVE PLT"); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_irelative_, got_order, is_got_relro); // Unlike some targets (.e.g x86), S/390 does not use separate .got and // .got.plt sections in output. The output .got section contains both // PLT and non-PLT GOT entries. this->got_ = new Output_data_got(); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_, got_order, is_got_relro); // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT. this->global_offset_table_ = symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, this->got_plt_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } return this->got_; } // Get the dynamic reloc section, creating it if necessary. template typename Target_s390::Reloc_section* Target_s390::rela_dyn_section(Layout* layout) { if (this->rela_dyn_ == NULL) { gold_assert(layout != NULL); this->rela_dyn_ = new Reloc_section(parameters->options().combreloc()); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_dyn_, ORDER_DYNAMIC_RELOCS, false); } return this->rela_dyn_; } // Get the section to use for IRELATIVE relocs, creating it if // necessary. These go in .rela.dyn, but only after all other dynamic // relocations. They need to follow the other dynamic relocations so // that they can refer to global variables initialized by those // relocs. template typename Target_s390::Reloc_section* Target_s390::rela_irelative_section(Layout* layout) { if (this->rela_irelative_ == NULL) { // Make sure we have already created the dynamic reloc section. this->rela_dyn_section(layout); this->rela_irelative_ = new Reloc_section(false); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_irelative_, ORDER_DYNAMIC_RELOCS, false); gold_assert(this->rela_dyn_->output_section() == this->rela_irelative_->output_section()); } return this->rela_irelative_; } // Write the first three reserved words of the .got.plt section. // The remainder of the section is written while writing the PLT // in Output_data_plt_s390::do_write. template void Output_data_got_plt_s390::do_write(Output_file* of) { // The first entry in the GOT is the address of the .dynamic section // aka the PT_DYNAMIC segment. The next two entries are reserved. // We saved space for them when we created the section in // Target_x86_64::got_section. const off_t got_file_offset = this->offset(); gold_assert(this->data_size() >= 3 * size / 8); unsigned char* const got_view = of->get_output_view(got_file_offset, 3 * size / 8); Output_section* dynamic = this->layout_->dynamic_section(); uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address(); elfcpp::Swap::writeval(got_view, dynamic_addr); memset(got_view + size / 8, 0, 2 * size / 8); of->write_output_view(got_file_offset, 3 * size / 8, got_view); } // Create the PLT section. template void Target_s390::make_plt_section(Symbol_table* symtab, Layout* layout) { if (this->plt_ == NULL) { // Create the GOT sections first. this->got_section(symtab, layout); // Ensure that .rela.dyn always appears before .rela.plt This is // necessary due to how, on 32-bit S/390 and some other targets, // .rela.dyn needs to include .rela.plt in it's range. this->rela_dyn_section(layout); this->plt_ = new Output_data_plt_s390(layout, this->got_, this->got_plt_, this->got_irelative_); // Add unwind information if requested. if (parameters->options().ld_generated_unwind_info()) this->plt_->add_eh_frame(layout); layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR), this->plt_, ORDER_PLT, false); // Make the sh_info field of .rela.plt point to .plt. Output_section* rela_plt_os = this->plt_->rela_plt()->output_section(); rela_plt_os->set_info_section(this->plt_->output_section()); } } // Create a PLT entry for a global symbol. template void Target_s390::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym) { if (gsym->has_plt_offset()) return; if (this->plt_ == NULL) this->make_plt_section(symtab, layout); this->plt_->add_entry(symtab, layout, gsym); } // Make a PLT entry for a local STT_GNU_IFUNC symbol. template void Target_s390::make_local_ifunc_plt_entry( Symbol_table* symtab, Layout* layout, Sized_relobj_file* relobj, unsigned int local_sym_index) { if (relobj->local_has_plt_offset(local_sym_index)) return; if (this->plt_ == NULL) this->make_plt_section(symtab, layout); unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout, relobj, local_sym_index); relobj->set_local_plt_offset(local_sym_index, plt_offset); } // Return the number of entries in the PLT. template unsigned int Target_s390::plt_entry_count() const { if (this->plt_ == NULL) return 0; return this->plt_->entry_count(); } // Return the offset of the first non-reserved PLT entry. template unsigned int Target_s390::first_plt_entry_offset() const { return this->plt_->first_plt_entry_offset(); } // Return the size of each PLT entry. template unsigned int Target_s390::plt_entry_size() const { return this->plt_->get_plt_entry_size(); } // Create the GOT and PLT sections for an incremental update. template Output_data_got_base* Target_s390::init_got_plt_for_update(Symbol_table* symtab, Layout* layout, unsigned int got_count, unsigned int plt_count) { gold_assert(this->got_ == NULL); // Add the three reserved entries. this->got_plt_ = new Output_data_got_plt_s390(layout, (plt_count + 3) * size / 8); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_plt_, ORDER_NON_RELRO_FIRST, false); // If there are any IRELATIVE relocations, they get GOT entries in // .got.plt after the jump slot entries. this->got_irelative_ = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT"); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->got_irelative_, ORDER_NON_RELRO_FIRST, false); this->got_ = new Output_data_got(got_count * size / 8); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_, ORDER_RELRO_LAST, true); // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT. this->global_offset_table_ = symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, this->got_plt_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); // Create the PLT section. this->plt_ = new Output_data_plt_s390(layout, this->got_, this->got_plt_, this->got_irelative_, plt_count); // Add unwind information if requested. if (parameters->options().ld_generated_unwind_info()) this->plt_->add_eh_frame(layout); layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR, this->plt_, ORDER_PLT, false); // Make the sh_info field of .rela.plt point to .plt. Output_section* rela_plt_os = this->plt_->rela_plt()->output_section(); rela_plt_os->set_info_section(this->plt_->output_section()); // Create the rela_dyn section. this->rela_dyn_section(layout); return this->got_; } // Reserve a GOT entry for a local symbol, and regenerate any // necessary dynamic relocations. template void Target_s390::reserve_local_got_entry( unsigned int got_index, Sized_relobj* obj, unsigned int r_sym, unsigned int got_type) { unsigned int got_offset = got_index * size / 8; Reloc_section* rela_dyn = this->rela_dyn_section(NULL); this->got_->reserve_local(got_index, obj, r_sym, got_type); switch (got_type) { case GOT_TYPE_STANDARD: if (parameters->options().output_is_position_independent()) rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_390_RELATIVE, this->got_, got_offset, 0, false); break; case GOT_TYPE_TLS_OFFSET: rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_TPOFF, this->got_, got_offset, 0); break; case GOT_TYPE_TLS_PAIR: this->got_->reserve_slot(got_index + 1); rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_DTPMOD, this->got_, got_offset, 0); break; default: gold_unreachable(); } } // Reserve a GOT entry for a global symbol, and regenerate any // necessary dynamic relocations. template void Target_s390::reserve_global_got_entry(unsigned int got_index, Symbol* gsym, unsigned int got_type) { unsigned int got_offset = got_index * size / 8; Reloc_section* rela_dyn = this->rela_dyn_section(NULL); this->got_->reserve_global(got_index, gsym, got_type); switch (got_type) { case GOT_TYPE_STANDARD: if (!gsym->final_value_is_known()) { if (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible() || gsym->type() == elfcpp::STT_GNU_IFUNC) rela_dyn->add_global(gsym, elfcpp::R_390_GLOB_DAT, this->got_, got_offset, 0); else rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE, this->got_, got_offset, 0, false); } break; case GOT_TYPE_TLS_OFFSET: rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_TPOFF, this->got_, got_offset, 0, false); break; case GOT_TYPE_TLS_PAIR: this->got_->reserve_slot(got_index + 1); rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPMOD, this->got_, got_offset, 0, false); rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPOFF, this->got_, got_offset + size / 8, 0, false); break; default: gold_unreachable(); } } // Register an existing PLT entry for a global symbol. template void Target_s390::register_global_plt_entry(Symbol_table* symtab, Layout* layout, unsigned int plt_index, Symbol* gsym) { gold_assert(this->plt_ != NULL); gold_assert(!gsym->has_plt_offset()); this->plt_->reserve_slot(plt_index); gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size()); unsigned int got_offset = (plt_index + 3) * size / 8; this->plt_->add_relocation(symtab, layout, gsym, got_offset); } // Force a COPY relocation for a given symbol. template void Target_s390::emit_copy_reloc( Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset) { this->copy_relocs_.emit_copy_reloc(symtab, symtab->get_sized_symbol(sym), os, offset, this->rela_dyn_section(NULL)); } // Create a GOT entry for the TLS module index. template unsigned int Target_s390::got_mod_index_entry(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object) { if (this->got_mod_index_offset_ == -1U) { gold_assert(symtab != NULL && layout != NULL && object != NULL); Reloc_section* rela_dyn = this->rela_dyn_section(layout); Output_data_got* got = this->got_section(symtab, layout); unsigned int got_offset = got->add_constant(0); rela_dyn->add_local(object, 0, elfcpp::R_390_TLS_DTPMOD, got, got_offset, 0); got->add_constant(0); this->got_mod_index_offset_ = got_offset; } return this->got_mod_index_offset_; } // Optimize the TLS relocation type based on what we know about the // symbol. IS_FINAL is true if the final address of this symbol is // known at link time. template tls::Tls_optimization Target_s390::optimize_tls_reloc(bool is_final, int r_type) { // If we are generating a shared library, then we can't do anything // in the linker. if (parameters->options().shared()) return tls::TLSOPT_NONE; switch (r_type) { case elfcpp::R_390_TLS_GD32: case elfcpp::R_390_TLS_GD64: case elfcpp::R_390_TLS_GDCALL: // These are General-Dynamic which permits fully general TLS // access. Since we know that we are generating an executable, // we can convert this to Initial-Exec. If we also know that // this is a local symbol, we can further switch to Local-Exec. if (is_final) return tls::TLSOPT_TO_LE; return tls::TLSOPT_TO_IE; case elfcpp::R_390_TLS_LDM32: case elfcpp::R_390_TLS_LDM64: case elfcpp::R_390_TLS_LDO32: case elfcpp::R_390_TLS_LDO64: case elfcpp::R_390_TLS_LDCALL: // This is Local-Dynamic, which refers to a local symbol in the // dynamic TLS block. Since we know that we generating an // executable, we can switch to Local-Exec. return tls::TLSOPT_TO_LE; case elfcpp::R_390_TLS_IE32: case elfcpp::R_390_TLS_IE64: case elfcpp::R_390_TLS_GOTIE32: case elfcpp::R_390_TLS_GOTIE64: case elfcpp::R_390_TLS_LOAD: // These are Initial-Exec relocs which get the thread offset // from the GOT. If we know that we are linking against the // local symbol, we can switch to Local-Exec, which links the // thread offset into the instruction. if (is_final) return tls::TLSOPT_TO_LE; return tls::TLSOPT_NONE; case elfcpp::R_390_TLS_GOTIE12: case elfcpp::R_390_TLS_IEENT: case elfcpp::R_390_TLS_GOTIE20: // These are Initial-Exec, but cannot be optimized. return tls::TLSOPT_NONE; case elfcpp::R_390_TLS_LE32: case elfcpp::R_390_TLS_LE64: // When we already have Local-Exec, there is nothing further we // can do. return tls::TLSOPT_NONE; default: gold_unreachable(); } } // Get the Reference_flags for a particular relocation. template int Target_s390::Scan::get_reference_flags(unsigned int r_type) { switch (r_type) { case elfcpp::R_390_NONE: case elfcpp::R_390_GNU_VTINHERIT: case elfcpp::R_390_GNU_VTENTRY: case elfcpp::R_390_GOTPC: case elfcpp::R_390_GOTPCDBL: // No symbol reference. return 0; case elfcpp::R_390_64: case elfcpp::R_390_32: case elfcpp::R_390_20: case elfcpp::R_390_16: case elfcpp::R_390_12: case elfcpp::R_390_8: return Symbol::ABSOLUTE_REF; case elfcpp::R_390_PC12DBL: case elfcpp::R_390_PC16: case elfcpp::R_390_PC16DBL: case elfcpp::R_390_PC24DBL: case elfcpp::R_390_PC32: case elfcpp::R_390_PC32DBL: case elfcpp::R_390_PC64: case elfcpp::R_390_GOTOFF16: case elfcpp::R_390_GOTOFF32: case elfcpp::R_390_GOTOFF64: return Symbol::RELATIVE_REF; case elfcpp::R_390_PLT12DBL: case elfcpp::R_390_PLT16DBL: case elfcpp::R_390_PLT24DBL: case elfcpp::R_390_PLT32: case elfcpp::R_390_PLT32DBL: case elfcpp::R_390_PLT64: case elfcpp::R_390_PLTOFF16: case elfcpp::R_390_PLTOFF32: case elfcpp::R_390_PLTOFF64: return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; case elfcpp::R_390_GOT12: case elfcpp::R_390_GOT16: case elfcpp::R_390_GOT20: case elfcpp::R_390_GOT32: case elfcpp::R_390_GOT64: case elfcpp::R_390_GOTENT: case elfcpp::R_390_GOTPLT12: case elfcpp::R_390_GOTPLT16: case elfcpp::R_390_GOTPLT20: case elfcpp::R_390_GOTPLT32: case elfcpp::R_390_GOTPLT64: case elfcpp::R_390_GOTPLTENT: // Absolute in GOT. return Symbol::ABSOLUTE_REF; case elfcpp::R_390_TLS_GD32: // Global-dynamic case elfcpp::R_390_TLS_GD64: case elfcpp::R_390_TLS_GDCALL: case elfcpp::R_390_TLS_LDM32: // Local-dynamic case elfcpp::R_390_TLS_LDM64: case elfcpp::R_390_TLS_LDO32: case elfcpp::R_390_TLS_LDO64: case elfcpp::R_390_TLS_LDCALL: case elfcpp::R_390_TLS_IE32: // Initial-exec case elfcpp::R_390_TLS_IE64: case elfcpp::R_390_TLS_IEENT: case elfcpp::R_390_TLS_GOTIE12: case elfcpp::R_390_TLS_GOTIE20: case elfcpp::R_390_TLS_GOTIE32: case elfcpp::R_390_TLS_GOTIE64: case elfcpp::R_390_TLS_LOAD: case elfcpp::R_390_TLS_LE32: // Local-exec case elfcpp::R_390_TLS_LE64: return Symbol::TLS_REF; case elfcpp::R_390_COPY: case elfcpp::R_390_GLOB_DAT: case elfcpp::R_390_JMP_SLOT: case elfcpp::R_390_RELATIVE: case elfcpp::R_390_IRELATIVE: case elfcpp::R_390_TLS_TPOFF: case elfcpp::R_390_TLS_DTPOFF: case elfcpp::R_390_TLS_DTPMOD: default: // Not expected. We will give an error later. return 0; } } // Report an unsupported relocation against a local symbol. template void Target_s390::Scan::unsupported_reloc_local( Sized_relobj_file* object, unsigned int r_type) { gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); } // We are about to emit a dynamic relocation of type R_TYPE. If the // dynamic linker does not support it, issue an error. template void Target_s390::Scan::check_non_pic(Relobj* object, unsigned int r_type) { gold_assert(r_type != elfcpp::R_390_NONE); if (size == 64) { switch (r_type) { // These are the relocation types supported by glibc for s390 64-bit. case elfcpp::R_390_RELATIVE: case elfcpp::R_390_IRELATIVE: case elfcpp::R_390_COPY: case elfcpp::R_390_GLOB_DAT: case elfcpp::R_390_JMP_SLOT: case elfcpp::R_390_TLS_DTPMOD: case elfcpp::R_390_TLS_DTPOFF: case elfcpp::R_390_TLS_TPOFF: case elfcpp::R_390_8: case elfcpp::R_390_16: case elfcpp::R_390_32: case elfcpp::R_390_64: case elfcpp::R_390_PC16: case elfcpp::R_390_PC16DBL: case elfcpp::R_390_PC32: case elfcpp::R_390_PC32DBL: case elfcpp::R_390_PC64: return; default: break; } } else { switch (r_type) { // These are the relocation types supported by glibc for s390 32-bit. case elfcpp::R_390_RELATIVE: case elfcpp::R_390_IRELATIVE: case elfcpp::R_390_COPY: case elfcpp::R_390_GLOB_DAT: case elfcpp::R_390_JMP_SLOT: case elfcpp::R_390_TLS_DTPMOD: case elfcpp::R_390_TLS_DTPOFF: case elfcpp::R_390_TLS_TPOFF: case elfcpp::R_390_8: case elfcpp::R_390_16: case elfcpp::R_390_32: case elfcpp::R_390_PC16: case elfcpp::R_390_PC16DBL: case elfcpp::R_390_PC32: case elfcpp::R_390_PC32DBL: return; default: break; } } // This prevents us from issuing more than one error per reloc // section. But we can still wind up issuing more than one // error per object file. if (this->issued_non_pic_error_) return; gold_assert(parameters->options().output_is_position_independent()); object->error(_("requires unsupported dynamic reloc; " "recompile with -fPIC")); this->issued_non_pic_error_ = true; return; } // Return whether we need to make a PLT entry for a relocation of the // given type against a STT_GNU_IFUNC symbol. template bool Target_s390::Scan::reloc_needs_plt_for_ifunc( Sized_relobj_file* object, unsigned int r_type) { int flags = Scan::get_reference_flags(r_type); if (flags & Symbol::TLS_REF) gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"), object->name().c_str(), r_type); return flags != 0; } // Scan a relocation for a local symbol. template inline void Target_s390::Scan::local(Symbol_table* symtab, Layout* layout, Target_s390* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, const elfcpp::Sym& lsym, bool is_discarded) { if (is_discarded) return; // A local STT_GNU_IFUNC symbol may require a PLT entry. bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC; if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type)) { unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym); } switch (r_type) { case elfcpp::R_390_NONE: case elfcpp::R_390_GNU_VTINHERIT: case elfcpp::R_390_GNU_VTENTRY: break; case elfcpp::R_390_64: // If building a shared library (or a position-independent // executable), we need to create a dynamic relocation for this // location. The relocation applied at link time will apply the // link-time value, so we flag the location with an // R_390_RELATIVE relocation so the dynamic loader can // relocate it easily. if (parameters->options().output_is_position_independent() && size == 64) { unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_local_relative(object, r_sym, elfcpp::R_390_RELATIVE, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), is_ifunc); } break; case elfcpp::R_390_32: case elfcpp::R_390_20: case elfcpp::R_390_16: case elfcpp::R_390_12: case elfcpp::R_390_8: if (parameters->options().output_is_position_independent()) { if (size == 32 && r_type == elfcpp::R_390_32) { unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_local_relative(object, r_sym, elfcpp::R_390_RELATIVE, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), is_ifunc); break; } check_non_pic(object, r_type); Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); if (lsym.get_st_type() != elfcpp::STT_SECTION) rela_dyn->add_local(object, r_sym, r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); else { gold_assert(lsym.get_st_value() == 0); unsigned int shndx = lsym.get_st_shndx(); bool is_ordinary; shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); if (!is_ordinary) object->error(_("section symbol %u has bad shndx %u"), r_sym, shndx); else rela_dyn->add_local_section(object, shndx, r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } break; case elfcpp::R_390_PC12DBL: case elfcpp::R_390_PC16: case elfcpp::R_390_PC16DBL: case elfcpp::R_390_PC24DBL: case elfcpp::R_390_PC32: case elfcpp::R_390_PC32DBL: case elfcpp::R_390_PC64: break; case elfcpp::R_390_PLT12DBL: case elfcpp::R_390_PLT16DBL: case elfcpp::R_390_PLT24DBL: case elfcpp::R_390_PLT32: case elfcpp::R_390_PLT32DBL: case elfcpp::R_390_PLT64: // Since we know this is a local symbol, we can handle this as a // PC32 reloc. break; case elfcpp::R_390_GOTPC: case elfcpp::R_390_GOTPCDBL: case elfcpp::R_390_GOTOFF16: case elfcpp::R_390_GOTOFF32: case elfcpp::R_390_GOTOFF64: case elfcpp::R_390_PLTOFF16: case elfcpp::R_390_PLTOFF32: case elfcpp::R_390_PLTOFF64: // We need a GOT section. target->got_section(symtab, layout); // For PLTOFF*, we'd normally want a PLT section, but since we // know this is a local symbol, no PLT is needed. break; case elfcpp::R_390_GOT12: case elfcpp::R_390_GOT16: case elfcpp::R_390_GOT20: case elfcpp::R_390_GOT32: case elfcpp::R_390_GOT64: case elfcpp::R_390_GOTENT: case elfcpp::R_390_GOTPLT12: case elfcpp::R_390_GOTPLT16: case elfcpp::R_390_GOTPLT20: case elfcpp::R_390_GOTPLT32: case elfcpp::R_390_GOTPLT64: case elfcpp::R_390_GOTPLTENT: { // The symbol requires a GOT section. Output_data_got* got = target->got_section(symtab, layout); // The symbol requires a GOT entry. unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); // For a STT_GNU_IFUNC symbol we want the PLT offset. That // lets function pointers compare correctly with shared // libraries. Otherwise we would need an IRELATIVE reloc. bool is_new; if (is_ifunc) is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD); else is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD); if (is_new) { // If we are generating a shared object, we need to add a // dynamic relocation for this symbol's GOT entry. if (parameters->options().output_is_position_independent()) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD); rela_dyn->add_local_relative(object, r_sym, elfcpp::R_390_RELATIVE, got, got_offset, 0, is_ifunc); } } // For GOTPLT*, we'd normally want a PLT section, but since // we know this is a local symbol, no PLT is needed. } break; case elfcpp::R_390_COPY: case elfcpp::R_390_GLOB_DAT: case elfcpp::R_390_JMP_SLOT: case elfcpp::R_390_RELATIVE: case elfcpp::R_390_IRELATIVE: // These are outstanding tls relocs, which are unexpected when linking case elfcpp::R_390_TLS_TPOFF: case elfcpp::R_390_TLS_DTPOFF: case elfcpp::R_390_TLS_DTPMOD: gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; // These are initial tls relocs, which are expected when linking case elfcpp::R_390_TLS_GD32: // Global-dynamic case elfcpp::R_390_TLS_GD64: case elfcpp::R_390_TLS_GDCALL: case elfcpp::R_390_TLS_LDM32: // Local-dynamic case elfcpp::R_390_TLS_LDM64: case elfcpp::R_390_TLS_LDO32: case elfcpp::R_390_TLS_LDO64: case elfcpp::R_390_TLS_LDCALL: case elfcpp::R_390_TLS_IE32: // Initial-exec case elfcpp::R_390_TLS_IE64: case elfcpp::R_390_TLS_IEENT: case elfcpp::R_390_TLS_GOTIE12: case elfcpp::R_390_TLS_GOTIE20: case elfcpp::R_390_TLS_GOTIE32: case elfcpp::R_390_TLS_GOTIE64: case elfcpp::R_390_TLS_LOAD: case elfcpp::R_390_TLS_LE32: // Local-exec case elfcpp::R_390_TLS_LE64: { bool output_is_shared = parameters->options().shared(); const tls::Tls_optimization optimized_type = Target_s390::optimize_tls_reloc(!output_is_shared, r_type); switch (r_type) { case elfcpp::R_390_TLS_GD32: // General-dynamic case elfcpp::R_390_TLS_GD64: case elfcpp::R_390_TLS_GDCALL: if (optimized_type == tls::TLSOPT_NONE) { // Create a pair of GOT entries for the module index and // dtv-relative offset. Output_data_got* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); unsigned int shndx = lsym.get_st_shndx(); bool is_ordinary; shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); if (!is_ordinary) object->error(_("local symbol %u has bad shndx %u"), r_sym, shndx); else got->add_local_pair_with_rel(object, r_sym, shndx, GOT_TYPE_TLS_PAIR, target->rela_dyn_section(layout), elfcpp::R_390_TLS_DTPMOD); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_local(object, r_type); break; case elfcpp::R_390_TLS_LDM32: // Local-dynamic case elfcpp::R_390_TLS_LDM64: case elfcpp::R_390_TLS_LDCALL: if (optimized_type == tls::TLSOPT_NONE) { // Create a GOT entry for the module index. target->got_mod_index_entry(symtab, layout, object); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_local(object, r_type); break; case elfcpp::R_390_TLS_LDO32: case elfcpp::R_390_TLS_LDO64: break; case elfcpp::R_390_TLS_IE32: // Initial-exec case elfcpp::R_390_TLS_IE64: // These two involve an absolute address if (parameters->options().shared() && optimized_type == tls::TLSOPT_NONE) { if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) || (size == 64 && r_type == elfcpp::R_390_TLS_IE64)) { // We need to create a dynamic relocation. Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); rela_dyn->add_local_relative(object, r_sym, elfcpp::R_390_RELATIVE, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), false); } else { unsupported_reloc_local(object, r_type); } } // Fall through. case elfcpp::R_390_TLS_IEENT: case elfcpp::R_390_TLS_GOTIE12: case elfcpp::R_390_TLS_GOTIE20: case elfcpp::R_390_TLS_GOTIE32: case elfcpp::R_390_TLS_GOTIE64: case elfcpp::R_390_TLS_LOAD: layout->set_has_static_tls(); if (optimized_type == tls::TLSOPT_NONE) { if (!output_is_shared) { // We're making an executable, and the symbol is local, but // we cannot optimize to LE. Make a const GOT entry instead. Output_data_got* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); got->add_local_plt(object, r_sym, GOT_TYPE_TLS_OFFSET); } else { // Create a GOT entry for the tp-relative offset. Output_data_got* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET, target->rela_dyn_section(layout), elfcpp::R_390_TLS_TPOFF); } } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_local(object, r_type); break; case elfcpp::R_390_TLS_LE32: // Local-exec case elfcpp::R_390_TLS_LE64: layout->set_has_static_tls(); if (output_is_shared) { // We need to create a dynamic relocation. if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) || (size == 64 && r_type == elfcpp::R_390_TLS_LE64)) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION); rela_dyn->add_local(object, r_sym, elfcpp::R_390_TLS_TPOFF, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } else { unsupported_reloc_local(object, r_type); } } break; default: gold_unreachable(); } } break; default: gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); break; } } // Scan a relocation for a global symbol. template inline void Target_s390::Scan::global(Symbol_table* symtab, Layout* layout, Target_s390* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, Symbol* gsym) { // A STT_GNU_IFUNC symbol may require a PLT entry. if (gsym->type() == elfcpp::STT_GNU_IFUNC && this->reloc_needs_plt_for_ifunc(object, r_type)) target->make_plt_entry(symtab, layout, gsym); switch (r_type) { case elfcpp::R_390_NONE: case elfcpp::R_390_GNU_VTINHERIT: case elfcpp::R_390_GNU_VTENTRY: break; case elfcpp::R_390_64: case elfcpp::R_390_32: case elfcpp::R_390_20: case elfcpp::R_390_16: case elfcpp::R_390_12: case elfcpp::R_390_8: { // Make a PLT entry if necessary. if (gsym->needs_plt_entry()) { target->make_plt_entry(symtab, layout, gsym); // Since this is not a PC-relative relocation, we may be // taking the address of a function. In that case we need to // set the entry in the dynamic symbol table to the address of // the PLT entry. if (gsym->is_from_dynobj() && !parameters->options().shared()) gsym->set_needs_dynsym_value(); } // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) { if (!parameters->options().output_is_position_independent() && gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else if (((size == 64 && r_type == elfcpp::R_390_64) || (size == 32 && r_type == elfcpp::R_390_32)) && gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false) && !gsym->is_from_dynobj() && !gsym->is_undefined() && !gsym->is_preemptible()) { // Use an IRELATIVE reloc for a locally defined // STT_GNU_IFUNC symbol. This makes a function // address in a PIE executable match the address in a // shared library that it links against. Reloc_section* rela_dyn = target->rela_irelative_section(layout); unsigned int r_type = elfcpp::R_390_IRELATIVE; rela_dyn->add_symbolless_global_addend(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } else if (((size == 64 && r_type == elfcpp::R_390_64) || (size == 32 && r_type == elfcpp::R_390_32)) && gsym->can_use_relative_reloc(false)) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), false); } else { check_non_pic(object, r_type); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_global(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } } break; case elfcpp::R_390_PC12DBL: case elfcpp::R_390_PC16: case elfcpp::R_390_PC16DBL: case elfcpp::R_390_PC24DBL: case elfcpp::R_390_PC32: case elfcpp::R_390_PC32DBL: case elfcpp::R_390_PC64: { // Make a PLT entry if necessary. if (gsym->needs_plt_entry()) { target->make_plt_entry(symtab, layout, gsym); // larl is often used to take address of a function. Aim the // symbol at the PLT entry. if (gsym->is_from_dynobj() && !parameters->options().shared()) gsym->set_needs_dynsym_value(); } // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) { if (parameters->options().output_is_executable() && gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else { check_non_pic(object, r_type); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_global(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } } break; case elfcpp::R_390_PLT12DBL: case elfcpp::R_390_PLT16DBL: case elfcpp::R_390_PLT24DBL: case elfcpp::R_390_PLT32: case elfcpp::R_390_PLT32DBL: case elfcpp::R_390_PLT64: // If the symbol is fully resolved, this is just a PC32 reloc. // Otherwise we need a PLT entry. if (gsym->final_value_is_known()) break; // If building a shared library, we can also skip the PLT entry // if the symbol is defined in the output file and is protected // or hidden. if (gsym->is_defined() && !gsym->is_from_dynobj() && !gsym->is_preemptible()) break; target->make_plt_entry(symtab, layout, gsym); break; case elfcpp::R_390_GOTPC: case elfcpp::R_390_GOTPCDBL: case elfcpp::R_390_GOTOFF16: case elfcpp::R_390_GOTOFF32: case elfcpp::R_390_GOTOFF64: case elfcpp::R_390_PLTOFF16: case elfcpp::R_390_PLTOFF32: case elfcpp::R_390_PLTOFF64: // We need a GOT section. target->got_section(symtab, layout); // For PLTOFF*, we also need a PLT entry (but only if the // symbol is not fully resolved). if ((r_type == elfcpp::R_390_PLTOFF16 || r_type == elfcpp::R_390_PLTOFF32 || r_type == elfcpp::R_390_PLTOFF64) && !gsym->final_value_is_known()) target->make_plt_entry(symtab, layout, gsym); break; case elfcpp::R_390_GOT12: case elfcpp::R_390_GOT16: case elfcpp::R_390_GOT20: case elfcpp::R_390_GOT32: case elfcpp::R_390_GOT64: case elfcpp::R_390_GOTENT: case elfcpp::R_390_GOTPLT12: case elfcpp::R_390_GOTPLT16: case elfcpp::R_390_GOTPLT20: case elfcpp::R_390_GOTPLT32: case elfcpp::R_390_GOTPLT64: case elfcpp::R_390_GOTPLTENT: { // The symbol requires a GOT entry. Output_data_got* got = target->got_section(symtab, layout); if (gsym->final_value_is_known()) { // For a STT_GNU_IFUNC symbol we want the PLT address. if (gsym->type() == elfcpp::STT_GNU_IFUNC) got->add_global_plt(gsym, GOT_TYPE_STANDARD); else got->add_global(gsym, GOT_TYPE_STANDARD); } else { // If this symbol is not fully resolved, we need to add a // dynamic relocation for it. Reloc_section* rela_dyn = target->rela_dyn_section(layout); // Use a GLOB_DAT rather than a RELATIVE reloc if: // // 1) The symbol may be defined in some other module. // // 2) We are building a shared library and this is a // protected symbol; using GLOB_DAT means that the dynamic // linker can use the address of the PLT in the main // executable when appropriate so that function address // comparisons work. // // 3) This is a STT_GNU_IFUNC symbol in position dependent // code, again so that function address comparisons work. if (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible() || (gsym->visibility() == elfcpp::STV_PROTECTED && parameters->options().shared()) || (gsym->type() == elfcpp::STT_GNU_IFUNC && parameters->options().output_is_position_independent())) got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn, elfcpp::R_390_GLOB_DAT); else { // For a STT_GNU_IFUNC symbol we want to write the PLT // offset into the GOT, so that function pointer // comparisons work correctly. bool is_new; if (gsym->type() != elfcpp::STT_GNU_IFUNC) is_new = got->add_global(gsym, GOT_TYPE_STANDARD); else { is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD); // Tell the dynamic linker to use the PLT address // when resolving relocations. if (gsym->is_from_dynobj() && !parameters->options().shared()) gsym->set_needs_dynsym_value(); } if (is_new) { unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD); rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE, got, got_off, 0, false); } } } } break; case elfcpp::R_390_COPY: case elfcpp::R_390_GLOB_DAT: case elfcpp::R_390_JMP_SLOT: case elfcpp::R_390_RELATIVE: case elfcpp::R_390_IRELATIVE: // These are outstanding tls relocs, which are unexpected when linking case elfcpp::R_390_TLS_TPOFF: case elfcpp::R_390_TLS_DTPOFF: case elfcpp::R_390_TLS_DTPMOD: gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; // These are initial tls relocs, which are expected for global() case elfcpp::R_390_TLS_GD32: // Global-dynamic case elfcpp::R_390_TLS_GD64: case elfcpp::R_390_TLS_GDCALL: case elfcpp::R_390_TLS_LDM32: // Local-dynamic case elfcpp::R_390_TLS_LDM64: case elfcpp::R_390_TLS_LDO32: case elfcpp::R_390_TLS_LDO64: case elfcpp::R_390_TLS_LDCALL: case elfcpp::R_390_TLS_IE32: // Initial-exec case elfcpp::R_390_TLS_IE64: case elfcpp::R_390_TLS_IEENT: case elfcpp::R_390_TLS_GOTIE12: case elfcpp::R_390_TLS_GOTIE20: case elfcpp::R_390_TLS_GOTIE32: case elfcpp::R_390_TLS_GOTIE64: case elfcpp::R_390_TLS_LOAD: case elfcpp::R_390_TLS_LE32: // Local-exec case elfcpp::R_390_TLS_LE64: { // For the optimizable Initial-Exec model, we can treat undef symbols // as final when building an executable. const bool is_final = (gsym->final_value_is_known() || ((r_type == elfcpp::R_390_TLS_IE32 || r_type == elfcpp::R_390_TLS_IE64 || r_type == elfcpp::R_390_TLS_GOTIE32 || r_type == elfcpp::R_390_TLS_GOTIE64) && gsym->is_undefined() && parameters->options().output_is_executable())); const tls::Tls_optimization optimized_type = Target_s390::optimize_tls_reloc(is_final, r_type); switch (r_type) { case elfcpp::R_390_TLS_GD32: // General-dynamic case elfcpp::R_390_TLS_GD64: case elfcpp::R_390_TLS_GDCALL: if (optimized_type == tls::TLSOPT_NONE) { // Create a pair of GOT entries for the module index and // dtv-relative offset. Output_data_got* got = target->got_section(symtab, layout); got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR, target->rela_dyn_section(layout), elfcpp::R_390_TLS_DTPMOD, elfcpp::R_390_TLS_DTPOFF); } else if (optimized_type == tls::TLSOPT_TO_IE) { // Create a GOT entry for the tp-relative offset. Output_data_got* got = target->got_section(symtab, layout); got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET, target->rela_dyn_section(layout), elfcpp::R_390_TLS_TPOFF); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_global(object, r_type, gsym); break; case elfcpp::R_390_TLS_LDM32: // Local-dynamic case elfcpp::R_390_TLS_LDM64: case elfcpp::R_390_TLS_LDCALL: if (optimized_type == tls::TLSOPT_NONE) { // Create a GOT entry for the module index. target->got_mod_index_entry(symtab, layout, object); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_global(object, r_type, gsym); break; case elfcpp::R_390_TLS_LDO32: case elfcpp::R_390_TLS_LDO64: break; case elfcpp::R_390_TLS_IE32: // Initial-exec case elfcpp::R_390_TLS_IE64: // These two involve an absolute address if (parameters->options().shared()) { if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) || (size == 64 && r_type == elfcpp::R_390_TLS_IE64)) { // We need to create a dynamic relocation. Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), false); } else { unsupported_reloc_global(object, r_type, gsym); } } // Fall through. case elfcpp::R_390_TLS_IEENT: case elfcpp::R_390_TLS_GOTIE12: case elfcpp::R_390_TLS_GOTIE20: case elfcpp::R_390_TLS_GOTIE32: case elfcpp::R_390_TLS_GOTIE64: case elfcpp::R_390_TLS_LOAD: layout->set_has_static_tls(); if (optimized_type == tls::TLSOPT_NONE) { if (is_final && !parameters->options().shared()) { // We're making an executable, and the symbol is local, but // we cannot optimize to LE. Make a const GOT entry instead. Output_data_got* got = target->got_section(symtab, layout); got->add_global_plt(gsym, GOT_TYPE_TLS_OFFSET); } else { // Create a GOT entry for the tp-relative offset. Output_data_got* got = target->got_section(symtab, layout); got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET, target->rela_dyn_section(layout), elfcpp::R_390_TLS_TPOFF); } } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_global(object, r_type, gsym); break; case elfcpp::R_390_TLS_LE32: // Local-exec case elfcpp::R_390_TLS_LE64: layout->set_has_static_tls(); if (parameters->options().shared()) { // We need to create a dynamic relocation. if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) || (size == 64 && r_type == elfcpp::R_390_TLS_LE64)) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_global(gsym, elfcpp::R_390_TLS_TPOFF, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } else { unsupported_reloc_global(object, r_type, gsym); } } break; default: gold_unreachable(); } } break; default: gold_error(_("%s: unsupported reloc %u against global symbol %s"), object->name().c_str(), r_type, gsym->demangled_name().c_str()); break; } } // Report an unsupported relocation against a global symbol. template void Target_s390::Scan::unsupported_reloc_global( Sized_relobj_file* object, unsigned int r_type, Symbol* gsym) { gold_error(_("%s: unsupported reloc %u against global symbol %s"), object->name().c_str(), r_type, gsym->demangled_name().c_str()); } // Returns true if this relocation type could be that of a function pointer. template inline bool Target_s390::Scan::possible_function_pointer_reloc(unsigned int r_type) { switch (r_type) { case elfcpp::R_390_32: case elfcpp::R_390_64: case elfcpp::R_390_PC32DBL: // could be used by larl insn case elfcpp::R_390_GOT12: case elfcpp::R_390_GOT16: case elfcpp::R_390_GOT20: case elfcpp::R_390_GOT32: case elfcpp::R_390_GOT64: case elfcpp::R_390_GOTENT: case elfcpp::R_390_GOTOFF16: case elfcpp::R_390_GOTOFF32: case elfcpp::R_390_GOTOFF64: return true; } return false; } // For safe ICF, scan a relocation for a local symbol to check if it // corresponds to a function pointer being taken. In that case mark // the function whose pointer was taken as not foldable. template inline bool Target_s390::Scan::local_reloc_may_be_function_pointer( Symbol_table* , Layout* , Target_s390* , Sized_relobj_file* , unsigned int , Output_section* , const elfcpp::Rela& , unsigned int r_type, const elfcpp::Sym&) { // When building a shared library, do not fold any local symbols. return (parameters->options().shared() || possible_function_pointer_reloc(r_type)); } // For safe ICF, scan a relocation for a global symbol to check if it // corresponds to a function pointer being taken. In that case mark // the function whose pointer was taken as not foldable. template inline bool Target_s390::Scan::global_reloc_may_be_function_pointer( Symbol_table*, Layout* , Target_s390* , Sized_relobj_file* , unsigned int , Output_section* , const elfcpp::Rela& , unsigned int r_type, Symbol* gsym) { // When building a shared library, do not fold symbols whose visibility // is hidden, internal or protected. return ((parameters->options().shared() && (gsym->visibility() == elfcpp::STV_INTERNAL || gsym->visibility() == elfcpp::STV_PROTECTED || gsym->visibility() == elfcpp::STV_HIDDEN)) || possible_function_pointer_reloc(r_type)); } template void Target_s390::gc_process_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef gold::Default_classify_reloc Classify_reloc; if (sh_type == elfcpp::SHT_REL) return; gold::gc_process_relocs, Scan, Classify_reloc>( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Perform a relocation. template inline bool Target_s390::Relocate::relocate( const Relocate_info* relinfo, unsigned int, Target_s390* target, Output_section*, size_t relnum, const unsigned char* preloc, const Sized_symbol* gsym, const Symbol_value* psymval, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr address, section_size_type view_size) { if (view == NULL) return true; const elfcpp::Rela rela(preloc); unsigned int r_type = elfcpp::elf_r_type(rela.get_r_info()); const Sized_relobj_file* object = relinfo->object; // Pick the value to use for symbols defined in the PLT. Symbol_value symval; if (gsym != NULL && gsym->use_plt_offset(Scan::get_reference_flags(r_type))) { symval.set_output_value(target->plt_address_for_global(gsym)); psymval = &symval; } else if (gsym == NULL && psymval->is_ifunc_symbol()) { unsigned int r_sym = elfcpp::elf_r_sym(rela.get_r_info()); if (object->local_has_plt_offset(r_sym)) { symval.set_output_value(target->plt_address_for_local(object, r_sym)); psymval = &symval; } } const elfcpp::Elf_Xword addend = rela.get_r_addend(); typename elfcpp::Elf_types::Elf_Addr value = 0; switch (r_type) { case elfcpp::R_390_PLT64: case elfcpp::R_390_PLT32: case elfcpp::R_390_PLT32DBL: case elfcpp::R_390_PLT24DBL: case elfcpp::R_390_PLT16DBL: case elfcpp::R_390_PLT12DBL: gold_assert(gsym == NULL || gsym->has_plt_offset() || gsym->final_value_is_known() || (gsym->is_defined() && !gsym->is_from_dynobj() && !gsym->is_preemptible())); // Fall through. case elfcpp::R_390_8: case elfcpp::R_390_12: case elfcpp::R_390_16: case elfcpp::R_390_20: case elfcpp::R_390_32: case elfcpp::R_390_64: case elfcpp::R_390_PC16: case elfcpp::R_390_PC32: case elfcpp::R_390_PC64: case elfcpp::R_390_PC32DBL: case elfcpp::R_390_PC24DBL: case elfcpp::R_390_PC16DBL: case elfcpp::R_390_PC12DBL: value = psymval->value(object, addend); break; case elfcpp::R_390_GOTPC: case elfcpp::R_390_GOTPCDBL: gold_assert(gsym != NULL); value = target->got_address() + addend; break; case elfcpp::R_390_PLTOFF64: case elfcpp::R_390_PLTOFF32: case elfcpp::R_390_PLTOFF16: gold_assert(gsym == NULL || gsym->has_plt_offset() || gsym->final_value_is_known()); // Fall through. case elfcpp::R_390_GOTOFF64: case elfcpp::R_390_GOTOFF32: case elfcpp::R_390_GOTOFF16: value = (psymval->value(object, addend) - target->got_address()); break; case elfcpp::R_390_GOT12: case elfcpp::R_390_GOT16: case elfcpp::R_390_GOT20: case elfcpp::R_390_GOT32: case elfcpp::R_390_GOT64: case elfcpp::R_390_GOTENT: case elfcpp::R_390_GOTPLT12: case elfcpp::R_390_GOTPLT16: case elfcpp::R_390_GOTPLT20: case elfcpp::R_390_GOTPLT32: case elfcpp::R_390_GOTPLT64: case elfcpp::R_390_GOTPLTENT: { unsigned int got_offset = 0; if (gsym != NULL) { gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD)); got_offset = gsym->got_offset(GOT_TYPE_STANDARD); } else { unsigned int r_sym = elfcpp::elf_r_sym(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)); got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD); } value = got_offset + target->got_main_offset() + addend; } break; // These are initial tls relocs, which are expected when linking case elfcpp::R_390_TLS_LOAD: case elfcpp::R_390_TLS_GDCALL: // Global-dynamic case elfcpp::R_390_TLS_GD32: case elfcpp::R_390_TLS_GD64: case elfcpp::R_390_TLS_LDCALL: // Local-dynamic case elfcpp::R_390_TLS_LDM32: case elfcpp::R_390_TLS_LDM64: case elfcpp::R_390_TLS_LDO32: case elfcpp::R_390_TLS_LDO64: case elfcpp::R_390_TLS_GOTIE12: // Initial-exec case elfcpp::R_390_TLS_GOTIE20: case elfcpp::R_390_TLS_GOTIE32: case elfcpp::R_390_TLS_GOTIE64: case elfcpp::R_390_TLS_IE32: case elfcpp::R_390_TLS_IE64: case elfcpp::R_390_TLS_IEENT: case elfcpp::R_390_TLS_LE32: // Local-exec case elfcpp::R_390_TLS_LE64: value = this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval, view, view_size); break; default: break; } typename S390_relocate_functions::Status status = S390_relocate_functions::STATUS_OK; switch (r_type) { case elfcpp::R_390_NONE: case elfcpp::R_390_GNU_VTINHERIT: case elfcpp::R_390_GNU_VTENTRY: case elfcpp::R_390_TLS_GDCALL: case elfcpp::R_390_TLS_LDCALL: case elfcpp::R_390_TLS_LOAD: break; case elfcpp::R_390_64: case elfcpp::R_390_GOT64: case elfcpp::R_390_GOTPLT64: case elfcpp::R_390_PLTOFF64: case elfcpp::R_390_GOTOFF64: case elfcpp::R_390_TLS_GD64: case elfcpp::R_390_TLS_LDM64: case elfcpp::R_390_TLS_LDO64: case elfcpp::R_390_TLS_GOTIE64: case elfcpp::R_390_TLS_IE64: case elfcpp::R_390_TLS_LE64: Relocate_functions::rela64(view, value, 0); break; case elfcpp::R_390_32: case elfcpp::R_390_GOT32: case elfcpp::R_390_GOTPLT32: case elfcpp::R_390_PLTOFF32: case elfcpp::R_390_GOTOFF32: case elfcpp::R_390_TLS_GD32: case elfcpp::R_390_TLS_LDM32: case elfcpp::R_390_TLS_LDO32: case elfcpp::R_390_TLS_GOTIE32: case elfcpp::R_390_TLS_IE32: case elfcpp::R_390_TLS_LE32: Relocate_functions::rela32(view, value, 0); break; case elfcpp::R_390_20: case elfcpp::R_390_GOT20: case elfcpp::R_390_GOTPLT20: case elfcpp::R_390_TLS_GOTIE20: status = S390_relocate_functions::rela20(view, value); break; case elfcpp::R_390_16: case elfcpp::R_390_GOT16: case elfcpp::R_390_GOTPLT16: case elfcpp::R_390_PLTOFF16: case elfcpp::R_390_GOTOFF16: status = S390_relocate_functions::rela16(view, value); break; case elfcpp::R_390_12: case elfcpp::R_390_GOT12: case elfcpp::R_390_GOTPLT12: case elfcpp::R_390_TLS_GOTIE12: status = S390_relocate_functions::rela12(view, value); break; case elfcpp::R_390_8: Relocate_functions::rela8(view, value, 0); break; case elfcpp::R_390_PC16: Relocate_functions::pcrela16(view, value, 0, address); break; case elfcpp::R_390_PLT64: case elfcpp::R_390_PC64: Relocate_functions::pcrela64(view, value, 0, address); break; case elfcpp::R_390_PLT32: case elfcpp::R_390_PC32: case elfcpp::R_390_GOTPC: Relocate_functions::pcrela32(view, value, 0, address); break; case elfcpp::R_390_PLT32DBL: case elfcpp::R_390_PC32DBL: case elfcpp::R_390_GOTPCDBL: status = S390_relocate_functions::pcrela32dbl(view, value, address); break; case elfcpp::R_390_PLT24DBL: case elfcpp::R_390_PC24DBL: status = S390_relocate_functions::pcrela24dbl(view, value, address); break; case elfcpp::R_390_PLT16DBL: case elfcpp::R_390_PC16DBL: status = S390_relocate_functions::pcrela16dbl(view, value, address); break; case elfcpp::R_390_PLT12DBL: case elfcpp::R_390_PC12DBL: status = S390_relocate_functions::pcrela12dbl(view, value, address); break; case elfcpp::R_390_GOTENT: case elfcpp::R_390_GOTPLTENT: case elfcpp::R_390_TLS_IEENT: value += target->got_address(); status = S390_relocate_functions::pcrela32dbl(view, value, address); break; case elfcpp::R_390_COPY: case elfcpp::R_390_GLOB_DAT: case elfcpp::R_390_JMP_SLOT: case elfcpp::R_390_RELATIVE: case elfcpp::R_390_IRELATIVE: // These are outstanding tls relocs, which are unexpected when linking case elfcpp::R_390_TLS_TPOFF: case elfcpp::R_390_TLS_DTPMOD: case elfcpp::R_390_TLS_DTPOFF: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unexpected reloc %u in object file"), r_type); break; default: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; } if (status != S390_relocate_functions::STATUS_OK) { gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("relocation overflow")); } return true; } // Perform a TLS relocation. template inline typename elfcpp::Elf_types::Elf_Addr Target_s390::Relocate::relocate_tls( const Relocate_info* relinfo, Target_s390* target, size_t relnum, const elfcpp::Rela& rela, unsigned int r_type, const Sized_symbol* gsym, const Symbol_value* psymval, unsigned char* view, section_size_type view_size) { Output_segment* tls_segment = relinfo->layout->tls_segment(); const Sized_relobj_file* object = relinfo->object; const elfcpp::Elf_Xword addend = rela.get_r_addend(); elfcpp::Shdr data_shdr(relinfo->data_shdr); bool is_allocatable = (data_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0; typename elfcpp::Elf_types::Elf_Addr value = psymval->value(relinfo->object, addend); const bool is_final = (gsym == NULL ? !parameters->options().shared() : gsym->final_value_is_known()); tls::Tls_optimization optimized_type = Target_s390::optimize_tls_reloc(is_final, r_type); switch (r_type) { case elfcpp::R_390_TLS_GDCALL: // Global-dynamic marker if (optimized_type == tls::TLSOPT_TO_LE) { if (tls_segment == NULL) { gold_assert(parameters->errors()->error_count() > 0 || issue_undefined_symbol_error(gsym)); return 0; } this->tls_gd_to_le(relinfo, relnum, rela, view, view_size); break; } else { if (optimized_type == tls::TLSOPT_TO_IE) { this->tls_gd_to_ie(relinfo, relnum, rela, view, view_size); break; } else if (optimized_type == tls::TLSOPT_NONE) { break; } } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; case elfcpp::R_390_TLS_GD32: // Global-dynamic case elfcpp::R_390_TLS_GD64: if (optimized_type == tls::TLSOPT_TO_LE) { if (tls_segment == NULL) { gold_assert(parameters->errors()->error_count() > 0 || issue_undefined_symbol_error(gsym)); return 0; } return value - tls_segment->memsz(); } else { unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE ? GOT_TYPE_TLS_OFFSET : GOT_TYPE_TLS_PAIR); if (gsym != NULL) { gold_assert(gsym->has_got_offset(got_type)); return (gsym->got_offset(got_type) + target->got_main_offset() + addend); } else { unsigned int r_sym = elfcpp::elf_r_sym(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, got_type)); return (object->local_got_offset(r_sym, got_type) + target->got_main_offset() + addend); } } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; case elfcpp::R_390_TLS_LDCALL: // Local-dynamic marker // This is a marker relocation. If the sequence is being turned to LE, // we modify the instruction, otherwise the instruction is untouched. if (optimized_type == tls::TLSOPT_TO_LE) { if (tls_segment == NULL) { gold_assert(parameters->errors()->error_count() > 0 || issue_undefined_symbol_error(gsym)); return 0; } this->tls_ld_to_le(relinfo, relnum, rela, view, view_size); break; } else if (optimized_type == tls::TLSOPT_NONE) { break; } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; case elfcpp::R_390_TLS_LDM32: // Local-dynamic module case elfcpp::R_390_TLS_LDM64: if (optimized_type == tls::TLSOPT_TO_LE) { if (tls_segment == NULL) { gold_assert(parameters->errors()->error_count() > 0 || issue_undefined_symbol_error(gsym)); return 0; } // Doesn't matter what we fill it with - it's going to be unused. return 0; } else if (optimized_type == tls::TLSOPT_NONE) { // Relocate the field with the offset of the GOT entry for // the module index. return (target->got_mod_index_entry(NULL, NULL, NULL) + addend + target->got_main_offset()); } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; case elfcpp::R_390_TLS_LDO32: // Local-dynamic offset case elfcpp::R_390_TLS_LDO64: // This relocation type is used in debugging information. // In that case we need to not optimize the value. If the // section is not allocatable, then we assume we should not // optimize this reloc. if (optimized_type == tls::TLSOPT_TO_LE && is_allocatable) { if (tls_segment == NULL) { gold_assert(parameters->errors()->error_count() > 0 || issue_undefined_symbol_error(gsym)); return 0; } value -= tls_segment->memsz(); } return value; case elfcpp::R_390_TLS_LOAD: // Initial-exec marker // This is a marker relocation. If the sequence is being turned to LE, // we modify the instruction, otherwise the instruction is untouched. if (gsym != NULL && gsym->is_undefined() && parameters->options().output_is_executable()) { Target_s390::Relocate::tls_ie_to_le(relinfo, relnum, rela, view, view_size); break; } else if (optimized_type == tls::TLSOPT_TO_LE) { if (tls_segment == NULL) { gold_assert(parameters->errors()->error_count() > 0 || issue_undefined_symbol_error(gsym)); return 0; } Target_s390::Relocate::tls_ie_to_le(relinfo, relnum, rela, view, view_size); break; } else if (optimized_type == tls::TLSOPT_NONE) { break; } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc type %u"), r_type); break; case elfcpp::R_390_TLS_GOTIE12: // Initial-exec, not optimizable case elfcpp::R_390_TLS_GOTIE20: case elfcpp::R_390_TLS_IEENT: case elfcpp::R_390_TLS_GOTIE32: // Initial-exec, optimizable case elfcpp::R_390_TLS_GOTIE64: case elfcpp::R_390_TLS_IE32: case elfcpp::R_390_TLS_IE64: if (gsym != NULL && gsym->is_undefined() && parameters->options().output_is_executable() // These three cannot be optimized to LE, no matter what && r_type != elfcpp::R_390_TLS_GOTIE12 && r_type != elfcpp::R_390_TLS_GOTIE20 && r_type != elfcpp::R_390_TLS_IEENT) { return value; } else if (optimized_type == tls::TLSOPT_TO_LE) { if (tls_segment == NULL) { gold_assert(parameters->errors()->error_count() > 0 || issue_undefined_symbol_error(gsym)); return 0; } return value - tls_segment->memsz(); } else if (optimized_type == tls::TLSOPT_NONE) { // Relocate the field with the offset of the GOT entry for // the tp-relative offset of the symbol. unsigned int got_offset; if (gsym != NULL) { gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET)); got_offset = gsym->got_offset(GOT_TYPE_TLS_OFFSET); } else { unsigned int r_sym = elfcpp::elf_r_sym(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)); got_offset = object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET); } got_offset += target->got_main_offset(); if (r_type == elfcpp::R_390_TLS_IE32 || r_type == elfcpp::R_390_TLS_IE64) return target->got_address() + got_offset + addend; else return got_offset + addend; } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc type %u"), r_type); break; case elfcpp::R_390_TLS_LE32: // Local-exec case elfcpp::R_390_TLS_LE64: if (tls_segment == NULL) { gold_assert(parameters->errors()->error_count() > 0 || issue_undefined_symbol_error(gsym)); return 0; } return value - tls_segment->memsz(); } return 0; } // Do a relocation in which we convert a TLS General-Dynamic to an // Initial-Exec. template inline void Target_s390::Relocate::tls_gd_to_ie( const Relocate_info* relinfo, size_t relnum, const elfcpp::Rela& rela, unsigned char* view, section_size_type view_size) { tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4); if (view[0] == 0x4d) { // bas, don't care about details // Change to l %r2, 0(%r2, %r12) view[0] = 0x58; view[1] = 0x22; view[2] = 0xc0; view[3] = 0x00; return; } else if (view[0] == 0xc0) { tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6); // brasl %r14, __tls_get_offset@plt if (view[1] == 0xe5) { // Change to l/lg %r2, 0(%r2, %r12) // There was a PLT32DBL reloc at the last 4 bytes, overwrite its result. if (size == 32) { // l view[0] = 0x58; view[1] = 0x22; view[2] = 0xc0; view[3] = 0x00; // nop view[4] = 0x07; view[5] = 0x07; } else { // lg view[0] = 0xe3; view[1] = 0x22; view[2] = 0xc0; view[3] = 0; view[4] = 0; view[5] = 0x04; } return; } } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported op for GD to IE")); } // Do a relocation in which we convert a TLS General-Dynamic to a // Local-Exec. template inline void Target_s390::Relocate::tls_gd_to_le( const Relocate_info* relinfo, size_t relnum, const elfcpp::Rela& rela, unsigned char* view, section_size_type view_size) { tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2); if (view[0] == 0x0d) { // basr, change to nop view[0] = 0x07; view[1] = 0x07; } else if (view[0] == 0x4d) { tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4); // bas, don't care about details, change to nop view[0] = 0x47; view[1] = 0; view[2] = 0; view[3] = 0; return; } else if (view[0] == 0xc0) { tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6); // brasl %r14, __tls_get_offset@plt if (view[1] == 0xe5) { // Change to nop jump. There was a PLT32DBL reloc at the last // 4 bytes, overwrite its result. view[1] = 0x04; view[2] = 0; view[3] = 0; view[4] = 0; view[5] = 0; return; } } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported op for GD to LE")); } template inline void Target_s390::Relocate::tls_ld_to_le( const Relocate_info* relinfo, size_t relnum, const elfcpp::Rela& rela, unsigned char* view, section_size_type view_size) { tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4); if (view[0] == 0x0d) { // basr, change to nop view[0] = 0x07; view[1] = 0x07; } else if (view[0] == 0x4d) { // bas, don't care about details, change to nop view[0] = 0x47; view[1] = 0; view[2] = 0; view[3] = 0; return; } else if (view[0] == 0xc0) { tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6); // brasl %r14, __tls_get_offset@plt if (view[1] == 0xe5) { // Change to nop jump. There was a PLT32DBL reloc at the last // 4 bytes, overwrite its result. view[1] = 0x04; view[2] = 0; view[3] = 0; view[4] = 0; view[5] = 0; return; } } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported op for LD to LE")); } // Do a relocation in which we convert a TLS Initial-Exec to a // Local-Exec. template inline void Target_s390::Relocate::tls_ie_to_le( const Relocate_info* relinfo, size_t relnum, const elfcpp::Rela& rela, unsigned char* view, section_size_type view_size) { tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4); if (view[0] == 0x58) { // l %rX, 0(%rY) or l %rX, 0(%rY, %r12) if ((view[2] & 0x0f) != 0 || view[3] != 0) goto err; int rx = view[1] >> 4 & 0xf; int ry = view[1] & 0xf; int rz = view[2] >> 4 & 0xf; if (rz == 0) { } else if (ry == 0) { ry = rz; } else if (rz == 12) { } else if (ry == 12) { ry = rz; } else goto err; // to lr %rX, $rY view[0] = 0x18; view[1] = rx << 4 | ry; // and insert a nop view[2] = 0x07; view[3] = 0x00; } else if (view[0] == 0xe3) { tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6); // lg %rX, 0(%rY) or lg %rX, 0(%rY, %r12) if ((view[2] & 0x0f) != 0 || view[3] != 0 || view[4] != 0 || view[5] != 0x04) goto err; int rx = view[1] >> 4 & 0xf; int ry = view[1] & 0xf; int rz = view[2] >> 4 & 0xf; if (rz == 0) { } else if (ry == 0) { ry = rz; } else if (rz == 12) { } else if (ry == 12) { ry = rz; } else goto err; // to sllg %rX, $rY, 0 view[0] = 0xeb; view[1] = rx << 4 | ry; view[2] = 0x00; view[3] = 0x00; view[4] = 0x00; view[5] = 0x0d; } else { err: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported op for IE to LE")); } } // Scan relocations for a section. template void Target_s390::scan_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef gold::Default_classify_reloc Classify_reloc; if (sh_type == elfcpp::SHT_REL) { gold_error(_("%s: unsupported REL reloc section"), object->name().c_str()); return; } gold::scan_relocs, Scan, Classify_reloc>( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Finalize the sections. template void Target_s390::do_finalize_sections( Layout* layout, const Input_objects*, Symbol_table* symtab) { const Reloc_section* rel_plt = (this->plt_ == NULL ? NULL : this->plt_->rela_plt()); layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt, this->rela_dyn_, true, size == 32); this->layout_ = layout; // Emit any relocs we saved in an attempt to avoid generating COPY // relocs. if (this->copy_relocs_.any_saved_relocs()) this->copy_relocs_.emit(this->rela_dyn_section(layout)); // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of // the .got section. Symbol* sym = this->global_offset_table_; if (sym != NULL) { uint64_t data_size = this->got_->current_data_size(); symtab->get_sized_symbol(sym)->set_symsize(data_size); } if (parameters->doing_static_link() && (this->plt_ == NULL || !this->plt_->has_irelative_section())) { // If linking statically, make sure that the __rela_iplt symbols // were defined if necessary, even if we didn't create a PLT. static const Define_symbol_in_segment syms[] = { { "__rela_iplt_start", // name elfcpp::PT_LOAD, // segment_type elfcpp::PF_W, // segment_flags_set elfcpp::PF(0), // segment_flags_clear 0, // value 0, // size elfcpp::STT_NOTYPE, // type elfcpp::STB_GLOBAL, // binding elfcpp::STV_HIDDEN, // visibility 0, // nonvis Symbol::SEGMENT_START, // offset_from_base true // only_if_ref }, { "__rela_iplt_end", // name elfcpp::PT_LOAD, // segment_type elfcpp::PF_W, // segment_flags_set elfcpp::PF(0), // segment_flags_clear 0, // value 0, // size elfcpp::STT_NOTYPE, // type elfcpp::STB_GLOBAL, // binding elfcpp::STV_HIDDEN, // visibility 0, // nonvis Symbol::SEGMENT_START, // offset_from_base true // only_if_ref } }; symtab->define_symbols(layout, 2, syms, layout->script_options()->saw_sections_clause()); } } // Scan the relocs during a relocatable link. template void Target_s390::scan_relocatable_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs* rr) { typedef gold::Default_classify_reloc Classify_reloc; typedef gold::Default_scan_relocatable_relocs Scan_relocatable_relocs; gold_assert(sh_type == elfcpp::SHT_RELA); gold::scan_relocatable_relocs( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols, rr); } // Scan the relocs for --emit-relocs. template void Target_s390::emit_relocs_scan( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_syms, Relocatable_relocs* rr) { typedef gold::Default_classify_reloc Classify_reloc; typedef gold::Default_emit_relocs_strategy Emit_relocs_strategy; gold_assert(sh_type == elfcpp::SHT_RELA); gold::scan_relocatable_relocs( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_syms, rr); } // Relocate a section during a relocatable link. template void Target_s390::relocate_relocs( const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types::Elf_Off offset_in_output_section, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size) { typedef gold::Default_classify_reloc Classify_reloc; gold_assert(sh_type == elfcpp::SHT_RELA); gold::relocate_relocs( relinfo, prelocs, reloc_count, output_section, offset_in_output_section, view, view_address, view_size, reloc_view, reloc_view_size); } // Return the offset to use for the GOT_INDX'th got entry which is // for a local tls symbol specified by OBJECT, SYMNDX. template int64_t Target_s390::do_tls_offset_for_local( const Relobj*, unsigned int, unsigned int) const { // The only way we can get called is when IEENT/GOTIE12/GOTIE20 // couldn't be optimised to LE. Output_segment* tls_segment = layout_->tls_segment(); return -tls_segment->memsz(); } // Return the offset to use for the GOT_INDX'th got entry which is // for global tls symbol GSYM. template int64_t Target_s390::do_tls_offset_for_global( Symbol*, unsigned int) const { Output_segment* tls_segment = layout_->tls_segment(); return -tls_segment->memsz(); } // Return the value to use for a dynamic which requires special // treatment. This is how we support equality comparisons of function // pointers across shared library boundaries, as described in the // processor specific ABI supplement. template uint64_t Target_s390::do_dynsym_value(const Symbol* gsym) const { gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); return this->plt_address_for_global(gsym); } // Return a string used to fill a code section with nops to take up // the specified length. template std::string Target_s390::do_code_fill(section_size_type length) const { if (length & 1) gold_warning(_("S/390 code fill of odd length requested")); return std::string(length, static_cast(0x07)); } // Return whether SYM should be treated as a call to a non-split // function. We don't want that to be true of a larl instruction // that merely loads its address. template bool Target_s390::do_is_call_to_non_split(const Symbol* sym, const unsigned char* preloc, const unsigned char* view, section_size_type view_size) const { if (sym->type() != elfcpp::STT_FUNC) return false; typename Reloc_types::Reloc reloc(preloc); typename elfcpp::Elf_types::Elf_WXword r_info = reloc.get_r_info(); unsigned int r_type = elfcpp::elf_r_type(r_info); section_offset_type offset = reloc.get_r_offset(); switch (r_type) { // PLT refs always involve calling the function. case elfcpp::R_390_PLT12DBL: case elfcpp::R_390_PLT16DBL: case elfcpp::R_390_PLT24DBL: case elfcpp::R_390_PLT32: case elfcpp::R_390_PLT32DBL: case elfcpp::R_390_PLT64: case elfcpp::R_390_PLTOFF16: case elfcpp::R_390_PLTOFF32: case elfcpp::R_390_PLTOFF64: // Could be used for calls for -msmall-exec. case elfcpp::R_390_PC16DBL: return true; // Tricky case. When used in a brasl, jg, and other branch instructions, // it's a call or a sibcall. However, when used in larl, it only loads // the function's address - not a call. case elfcpp::R_390_PC32DBL: { if (offset < 2 || offset + 4 > static_cast(view_size)) { // Should not happen. gold_error(_("instruction with PC32DBL not wholly within section")); return false; } uint8_t op0 = view[offset-2]; uint8_t op1 = view[offset-1] & 0xf; // LARL if (op0 == 0xc0 && op1 == 0) return false; // Otherwise, it's either a call instruction, a branch instruction // (used as a sibcall), or a data manipulation instruction (which // has no business being used on a function, and can be ignored). return true; } // Otherwise, it's probably not a call. default: return false; } } // Code sequences to match below. template const unsigned char Target_s390::ss_code_bras_8[] = { 0xa7, 0x15, 0x00, 0x06, // bras %r1, .+0xc }; template const unsigned char Target_s390::ss_code_l_basr[] = { 0x58, 0xe0, 0x10, 0x00, // l %r14, 0(%r1) 0x58, 0x10, 0x10, 0x04, // l %r1, 4(%r1) 0x0d, 0xee, // basr %r14, %r14 }; template const unsigned char Target_s390::ss_code_a_basr[] = { 0x18, 0xe1, // lr %r14, %r1 0x5a, 0xe0, 0x10, 0x00, // a %r14, 0(%r1) 0x5a, 0x10, 0x10, 0x04, // a %r1, 4(%r1) 0x0d, 0xee, // basr %r14, %r14 }; template const unsigned char Target_s390::ss_code_larl[] = { 0xc0, 0x10, // larl %r1, ... }; template const unsigned char Target_s390::ss_code_brasl[] = { 0xc0, 0xe5, // brasl %r14, ... }; template const unsigned char Target_s390::ss_code_jg[] = { 0xc0, 0xf4, // jg ... }; template const unsigned char Target_s390::ss_code_jgl[] = { 0xc0, 0x44, // jgl ... }; template<> bool Target_s390<32>::ss_match_st_r14(unsigned char* view, section_size_type view_size, section_offset_type *offset) const { static const unsigned char ss_code_st_r14[] = { 0x50, 0xe0, 0xf0, 0x04, // st %r14, 4(%r15) }; if (!this->match_view_u(view, view_size, *offset, ss_code_st_r14, sizeof ss_code_st_r14)) return false; *offset += sizeof ss_code_st_r14; return true; } template<> bool Target_s390<64>::ss_match_st_r14(unsigned char* view, section_size_type view_size, section_offset_type *offset) const { static const unsigned char ss_code_st_r14[] = { 0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x24 // stg %r14, 8(%r15) }; if (!this->match_view_u(view, view_size, *offset, ss_code_st_r14, sizeof ss_code_st_r14)) return false; *offset += sizeof ss_code_st_r14; return true; } template<> bool Target_s390<32>::ss_match_l_r14(unsigned char* view, section_size_type view_size, section_offset_type *offset) const { static const unsigned char ss_code_l_r14[] = { 0x58, 0xe0, 0xf0, 0x04, // l %r14, 4(%r15) }; if (!this->match_view_u(view, view_size, *offset, ss_code_l_r14, sizeof ss_code_l_r14)) return false; *offset += sizeof ss_code_l_r14; return true; } template<> bool Target_s390<64>::ss_match_l_r14(unsigned char* view, section_size_type view_size, section_offset_type *offset) const { static const unsigned char ss_code_l_r14[] = { 0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x04 // lg %r14, 8(%r15) }; if (!this->match_view_u(view, view_size, *offset, ss_code_l_r14, sizeof ss_code_l_r14)) return false; *offset += sizeof ss_code_l_r14; return true; } template bool Target_s390::ss_match_mcount(unsigned char* view, section_size_type view_size, section_offset_type *offset) const { // Match the mcount call sequence. section_offset_type myoff = *offset; // First, look for the store instruction saving %r14. if (!this->ss_match_st_r14(view, view_size, &myoff)) return false; // Now, param load and the actual call. if (this->match_view_u(view, view_size, myoff, ss_code_larl, sizeof ss_code_larl)) { myoff += sizeof ss_code_larl + 4; // After larl, expect a brasl. if (!this->match_view_u(view, view_size, myoff, ss_code_brasl, sizeof ss_code_brasl)) return false; myoff += sizeof ss_code_brasl + 4; } else if (size == 32 && this->match_view_u(view, view_size, myoff, ss_code_bras_8, sizeof ss_code_bras_8)) { // The bras skips over a block of 8 bytes, loading its address // to %r1. myoff += sizeof ss_code_bras_8 + 8; // Now, there are two sequences used for actual load and call, // absolute and PIC. if (this->match_view_u(view, view_size, myoff, ss_code_l_basr, sizeof ss_code_l_basr)) myoff += sizeof ss_code_l_basr; else if (this->match_view_u(view, view_size, myoff, ss_code_a_basr, sizeof ss_code_a_basr)) myoff += sizeof ss_code_a_basr; else return false; } else return false; // Finally, a load bringing %r14 back. if (!this->ss_match_l_r14(view, view_size, &myoff)) return false; // Found it. *offset = myoff; return true; } template<> bool Target_s390<32>::ss_match_ear(unsigned char* view, section_size_type view_size, section_offset_type *offset) const { static const unsigned char ss_code_ear[] = { 0xb2, 0x4f, 0x00, 0x10, // ear %r1, %a0 }; if (!this->match_view_u(view, view_size, *offset, ss_code_ear, sizeof ss_code_ear)) return false; *offset += sizeof ss_code_ear; return true; } template<> bool Target_s390<64>::ss_match_ear(unsigned char* view, section_size_type view_size, section_offset_type *offset) const { static const unsigned char ss_code_ear[] = { 0xb2, 0x4f, 0x00, 0x10, // ear %r1, %a0 0xeb, 0x11, 0x00, 0x20, 0x00, 0x0d, // sllg %r1,%r1,32 0xb2, 0x4f, 0x00, 0x11, // ear %r1, %a1 }; if (!this->match_view_u(view, view_size, *offset, ss_code_ear, sizeof ss_code_ear)) return false; *offset += sizeof ss_code_ear; return true; } template<> bool Target_s390<32>::ss_match_c(unsigned char* view, section_size_type view_size, section_offset_type *offset) const { static const unsigned char ss_code_c[] = { 0x59, 0xf0, 0x10, 0x20, // c %r15, 0x20(%r1) }; if (!this->match_view_u(view, view_size, *offset, ss_code_c, sizeof ss_code_c)) return false; *offset += sizeof ss_code_c; return true; } template<> bool Target_s390<64>::ss_match_c(unsigned char* view, section_size_type view_size, section_offset_type *offset) const { static const unsigned char ss_code_c[] = { 0xe3, 0xf0, 0x10, 0x38, 0x00, 0x20, // cg %r15, 0x38(%r1) }; if (!this->match_view_u(view, view_size, *offset, ss_code_c, sizeof ss_code_c)) return false; *offset += sizeof ss_code_c; return true; } template<> bool Target_s390<32>::ss_match_l(unsigned char* view, section_size_type view_size, section_offset_type *offset, int *guard_reg) const { // l %guard_reg, 0x20(%r1) if (convert_to_section_size_type(*offset + 4) > view_size || view[*offset] != 0x58 || (view[*offset + 1] & 0xf) != 0x0 || view[*offset + 2] != 0x10 || view[*offset + 3] != 0x20) return false; *offset += 4; *guard_reg = view[*offset + 1] >> 4 & 0xf; return true; } template<> bool Target_s390<64>::ss_match_l(unsigned char* view, section_size_type view_size, section_offset_type *offset, int *guard_reg) const { // lg %guard_reg, 0x38(%r1) if (convert_to_section_size_type(*offset + 6) > view_size || view[*offset] != 0xe3 || (view[*offset + 1] & 0xf) != 0x0 || view[*offset + 2] != 0x10 || view[*offset + 3] != 0x38 || view[*offset + 4] != 0x00 || view[*offset + 5] != 0x04) return false; *offset += 6; *guard_reg = view[*offset + 1] >> 4 & 0xf; return true; } template bool Target_s390::ss_match_ahi(unsigned char* view, section_size_type view_size, section_offset_type *offset, int guard_reg, uint32_t *arg) const { int op = size == 32 ? 0xa : 0xb; // a[g]hi %guard_reg, if (convert_to_section_size_type(*offset + 4) > view_size || view[*offset] != 0xa7 || view[*offset + 1] != (guard_reg << 4 | op) // Disallow negative size. || view[*offset + 2] & 0x80) return false; *arg = elfcpp::Swap<16, true>::readval(view + *offset + 2); *offset += 4; return true; } template bool Target_s390::ss_match_alfi(unsigned char* view, section_size_type view_size, section_offset_type *offset, int guard_reg, uint32_t *arg) const { int op = size == 32 ? 0xb : 0xa; // al[g]fi %guard_reg, if (convert_to_section_size_type(*offset + 6) > view_size || view[*offset] != 0xc2 || view[*offset + 1] != (guard_reg << 4 | op)) return false; *arg = elfcpp::Swap<32, true>::readval(view + *offset + 2); *offset += 6; return true; } template<> bool Target_s390<32>::ss_match_cr(unsigned char* view, section_size_type view_size, section_offset_type *offset, int guard_reg) const { // cr %r15, %guard_reg if (convert_to_section_size_type(*offset + 2) > view_size || view[*offset] != 0x19 || view[*offset + 1] != (0xf0 | guard_reg)) return false; *offset += 2; return true; } template<> bool Target_s390<64>::ss_match_cr(unsigned char* view, section_size_type view_size, section_offset_type *offset, int guard_reg) const { // cgr %r15, %guard_reg if (convert_to_section_size_type(*offset + 4) > view_size || view[*offset] != 0xb9 || view[*offset + 1] != 0x20 || view[*offset + 2] != 0x00 || view[*offset + 3] != (0xf0 | guard_reg)) return false; *offset += 4; return true; } // FNOFFSET in section SHNDX in OBJECT is the start of a function // compiled with -fsplit-stack. The function calls non-split-stack // code. We have to change the function so that it always ensures // that it has enough stack space to run some random function. template void Target_s390::do_calls_non_split(Relobj* object, unsigned int shndx, section_offset_type fnoffset, section_size_type, const unsigned char *prelocs, size_t reloc_count, unsigned char* view, section_size_type view_size, std::string*, std::string*) const { // true if there's a conditional call to __morestack in the function, // false if there's an unconditional one. bool conditional = false; // Offset of the byte after the compare insn, if conditional. section_offset_type cmpend = 0; // Type and immediate offset of the add instruction that adds frame size // to guard. enum { SS_ADD_NONE, SS_ADD_AHI, SS_ADD_ALFI, } fsadd_type = SS_ADD_NONE; section_offset_type fsadd_offset = 0; uint32_t fsadd_frame_size = 0; // Register used for loading guard. Usually r1, but can also be r0 or r2-r5. int guard_reg; // Offset of the conditional jump. section_offset_type jump_offset = 0; // Section view and offset of param block. section_offset_type param_offset = 0; unsigned char *param_view = 0; section_size_type param_view_size = 0; // Current position in function. section_offset_type curoffset = fnoffset; // And the position of split-stack prologue. section_offset_type ssoffset; // Frame size. typename elfcpp::Elf_types::Elf_Addr frame_size; // Relocation parsing. typedef typename Reloc_types::Reloc Reltype; const int reloc_size = Reloc_types::reloc_size; const unsigned char *pr = prelocs; // If the function was compiled with -pg, the profiling code may come before // the split-stack prologue. Skip it. this->ss_match_mcount(view, view_size, &curoffset); ssoffset = curoffset; // First, figure out if there's a conditional call by looking for the // extract-tp, add, cmp sequence. if (this->ss_match_ear(view, view_size, &curoffset)) { // Found extract-tp, now look for an add and compare. conditional = true; if (this->ss_match_c(view, view_size, &curoffset)) { // Found a direct compare of stack pointer with the guard, // we're done here. } else if (this->ss_match_l(view, view_size, &curoffset, &guard_reg)) { // Found a load of guard to register, look for an add and compare. if (this->ss_match_ahi(view, view_size, &curoffset, guard_reg, &fsadd_frame_size)) { fsadd_type = SS_ADD_AHI; fsadd_offset = curoffset - 2; } else if (this->ss_match_alfi(view, view_size, &curoffset, guard_reg, &fsadd_frame_size)) { fsadd_type = SS_ADD_ALFI; fsadd_offset = curoffset - 4; } else { goto bad; } // Now, there has to be a compare. if (!this->ss_match_cr(view, view_size, &curoffset, guard_reg)) goto bad; } else { goto bad; } cmpend = curoffset; } // Second, look for the call. if (!this->match_view_u(view, view_size, curoffset, ss_code_larl, sizeof ss_code_larl)) goto bad; curoffset += sizeof ss_code_larl; // Find out larl's operand. It should be a local symbol in .rodata // section. for (size_t i = 0; i < reloc_count; ++i, pr += reloc_size) { Reltype reloc(pr); if (static_cast(reloc.get_r_offset()) == curoffset) { typename elfcpp::Elf_types::Elf_WXword r_info = reloc.get_r_info(); unsigned int r_sym = elfcpp::elf_r_sym(r_info); unsigned int r_type = elfcpp::elf_r_type(r_info); if (r_type != elfcpp::R_390_PC32DBL) goto bad; if (r_sym >= object->local_symbol_count()) goto bad; Sized_relobj_file *object_sized = static_cast *>(object); const Symbol_value* sym = object_sized->local_symbol(r_sym); bool param_shndx_ordinary; const unsigned int param_shndx = sym->input_shndx(¶m_shndx_ordinary); if (!param_shndx_ordinary) goto bad; param_offset = sym->input_value() + reloc.get_r_addend() - 2 - object->output_section(param_shndx)->address() - object->output_section_offset(param_shndx); param_view = object->get_output_view(param_shndx, ¶m_view_size); break; } } if (!param_view) goto bad; curoffset += 4; // Now, there has to be a jump to __morestack. jump_offset = curoffset; if (this->match_view_u(view, view_size, curoffset, conditional ? ss_code_jgl : ss_code_jg, sizeof ss_code_jg)) curoffset += sizeof ss_code_jg; else goto bad; curoffset += 4; // Read the frame size. if (convert_to_section_size_type(param_offset + size / 8) > param_view_size) goto bad; frame_size = elfcpp::Swap::readval(param_view + param_offset); // Sanity check. if (fsadd_type != SS_ADD_NONE && fsadd_frame_size != frame_size) goto bad; // Bump the frame size. frame_size += parameters->options().split_stack_adjust_size(); // Store it to the param block. elfcpp::Swap::writeval(param_view + param_offset, frame_size); if (!conditional) { // If the call was already unconditional, we're done. } else if (frame_size <= 0xffffffff && fsadd_type == SS_ADD_ALFI) { // Using alfi to add the frame size, and it still fits. Adjust it. elfcpp::Swap_unaligned<32, true>::writeval(view + fsadd_offset, frame_size); } else { // We were either relying on the backoff area, or used ahi to load // frame size. This won't fly, as our new frame size is too large. // Convert the sequence to unconditional by nopping out the comparison, // and rewiring the jump. this->set_view_to_nop(view, view_size, ssoffset, cmpend - ssoffset); // The jump is jgl, we'll mutate it to jg. view[jump_offset+1] = 0xf4; } return; bad: if (!object->has_no_split_stack()) object->error(_("failed to match split-stack sequence at " "section %u offset %0zx"), shndx, static_cast(fnoffset)); } // Relocate section data. template void Target_s390::relocate_section( const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr address, section_size_type view_size, const Reloc_symbol_changes* reloc_symbol_changes) { typedef gold::Default_classify_reloc Classify_reloc; gold_assert(sh_type == elfcpp::SHT_RELA); gold::relocate_section, Relocate, gold::Default_comdat_behavior, Classify_reloc>( relinfo, this, prelocs, reloc_count, output_section, needs_special_offset_handling, view, address, view_size, reloc_symbol_changes); } // Apply an incremental relocation. Incremental relocations always refer // to global symbols. template void Target_s390::apply_relocation( const Relocate_info* relinfo, typename elfcpp::Elf_types::Elf_Addr r_offset, unsigned int r_type, typename elfcpp::Elf_types::Elf_Swxword r_addend, const Symbol* gsym, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr address, section_size_type view_size) { gold::apply_relocation, typename Target_s390::Relocate>( relinfo, this, r_offset, r_type, r_addend, gsym, view, address, view_size); } // The selector for s390 object files. template class Target_selector_s390 : public Target_selector { public: Target_selector_s390() : Target_selector(elfcpp::EM_S390, size, true, (size == 64 ? "elf64-s390" : "elf32-s390"), (size == 64 ? "elf64_s390" : "elf32_s390")) { } virtual Target* do_instantiate_target() { return new Target_s390(); } }; Target_selector_s390<32> target_selector_s390; Target_selector_s390<64> target_selector_s390x; } // End anonymous namespace.