/* Language independent support for printing types for GDB, the GNU debugger. Copyright (C) 1986-2018 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "gdb_obstack.h" #include "bfd.h" /* Binary File Description */ #include "symtab.h" #include "gdbtypes.h" #include "expression.h" #include "value.h" #include "gdbcore.h" #include "command.h" #include "gdbcmd.h" #include "target.h" #include "language.h" #include "cp-abi.h" #include "typeprint.h" #include "valprint.h" #include #include "cli/cli-utils.h" #include "extension.h" #include "completer.h" const struct type_print_options type_print_raw_options = { 1, /* raw */ 1, /* print_methods */ 1, /* print_typedefs */ 0, /* print_offsets */ 0, /* print_nested_type_limit */ NULL, /* local_typedefs */ NULL, /* global_table */ NULL /* global_printers */ }; /* The default flags for 'ptype' and 'whatis'. */ static struct type_print_options default_ptype_flags = { 0, /* raw */ 1, /* print_methods */ 1, /* print_typedefs */ 0, /* print_offsets */ 0, /* print_nested_type_limit */ NULL, /* local_typedefs */ NULL, /* global_table */ NULL /* global_printers */ }; /* A hash table holding typedef_field objects. This is more complicated than an ordinary hash because it must also track the lifetime of some -- but not all -- of the contained objects. */ struct typedef_hash_table { /* The actual hash table. */ htab_t table; /* Storage for typedef_field objects that must be synthesized. */ struct obstack storage; }; /* A hash function for a typedef_field. */ static hashval_t hash_typedef_field (const void *p) { const struct decl_field *tf = (const struct decl_field *) p; struct type *t = check_typedef (tf->type); return htab_hash_string (TYPE_SAFE_NAME (t)); } /* An equality function for a typedef field. */ static int eq_typedef_field (const void *a, const void *b) { const struct decl_field *tfa = (const struct decl_field *) a; const struct decl_field *tfb = (const struct decl_field *) b; return types_equal (tfa->type, tfb->type); } /* Add typedefs from T to the hash table TABLE. */ void recursively_update_typedef_hash (struct typedef_hash_table *table, struct type *t) { int i; if (table == NULL) return; for (i = 0; i < TYPE_TYPEDEF_FIELD_COUNT (t); ++i) { struct decl_field *tdef = &TYPE_TYPEDEF_FIELD (t, i); void **slot; slot = htab_find_slot (table->table, tdef, INSERT); /* Only add a given typedef name once. Really this shouldn't happen; but it is safe enough to do the updates breadth-first and thus use the most specific typedef. */ if (*slot == NULL) *slot = tdef; } /* Recurse into superclasses. */ for (i = 0; i < TYPE_N_BASECLASSES (t); ++i) recursively_update_typedef_hash (table, TYPE_BASECLASS (t, i)); } /* Add template parameters from T to the typedef hash TABLE. */ void add_template_parameters (struct typedef_hash_table *table, struct type *t) { int i; if (table == NULL) return; for (i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (t); ++i) { struct decl_field *tf; void **slot; /* We only want type-valued template parameters in the hash. */ if (SYMBOL_CLASS (TYPE_TEMPLATE_ARGUMENT (t, i)) != LOC_TYPEDEF) continue; tf = XOBNEW (&table->storage, struct decl_field); tf->name = SYMBOL_LINKAGE_NAME (TYPE_TEMPLATE_ARGUMENT (t, i)); tf->type = SYMBOL_TYPE (TYPE_TEMPLATE_ARGUMENT (t, i)); slot = htab_find_slot (table->table, tf, INSERT); if (*slot == NULL) *slot = tf; } } /* Create a new typedef-lookup hash table. */ struct typedef_hash_table * create_typedef_hash (void) { struct typedef_hash_table *result; result = XNEW (struct typedef_hash_table); result->table = htab_create_alloc (10, hash_typedef_field, eq_typedef_field, NULL, xcalloc, xfree); obstack_init (&result->storage); return result; } /* Free a typedef field table. */ void free_typedef_hash (struct typedef_hash_table *table) { if (table != NULL) { htab_delete (table->table); obstack_free (&table->storage, NULL); xfree (table); } } /* A cleanup for freeing a typedef_hash_table. */ static void do_free_typedef_hash (void *arg) { free_typedef_hash ((struct typedef_hash_table *) arg); } /* Return a new cleanup that frees TABLE. */ struct cleanup * make_cleanup_free_typedef_hash (struct typedef_hash_table *table) { return make_cleanup (do_free_typedef_hash, table); } /* Helper function for copy_typedef_hash. */ static int copy_typedef_hash_element (void **slot, void *nt) { htab_t new_table = (htab_t) nt; void **new_slot; new_slot = htab_find_slot (new_table, *slot, INSERT); if (*new_slot == NULL) *new_slot = *slot; return 1; } /* Copy a typedef hash. */ struct typedef_hash_table * copy_typedef_hash (struct typedef_hash_table *table) { struct typedef_hash_table *result; if (table == NULL) return NULL; result = create_typedef_hash (); htab_traverse_noresize (table->table, copy_typedef_hash_element, result->table); return result; } /* A cleanup to free the global typedef hash. */ static void do_free_global_table (void *arg) { struct type_print_options *flags = (struct type_print_options *) arg; free_typedef_hash (flags->global_typedefs); free_ext_lang_type_printers (flags->global_printers); } /* Create the global typedef hash. */ static struct cleanup * create_global_typedef_table (struct type_print_options *flags) { gdb_assert (flags->global_typedefs == NULL && flags->global_printers == NULL); flags->global_typedefs = create_typedef_hash (); flags->global_printers = start_ext_lang_type_printers (); return make_cleanup (do_free_global_table, flags); } /* Look up the type T in the global typedef hash. If it is found, return the typedef name. If it is not found, apply the type-printers, if any, given by start_script_type_printers and return the result. A NULL return means that the name was not found. */ static const char * find_global_typedef (const struct type_print_options *flags, struct type *t) { char *applied; void **slot; struct decl_field tf, *new_tf; if (flags->global_typedefs == NULL) return NULL; tf.name = NULL; tf.type = t; slot = htab_find_slot (flags->global_typedefs->table, &tf, INSERT); if (*slot != NULL) { new_tf = (struct decl_field *) *slot; return new_tf->name; } /* Put an entry into the hash table now, in case apply_ext_lang_type_printers recurses. */ new_tf = XOBNEW (&flags->global_typedefs->storage, struct decl_field); new_tf->name = NULL; new_tf->type = t; *slot = new_tf; applied = apply_ext_lang_type_printers (flags->global_printers, t); if (applied != NULL) { new_tf->name = (const char *) obstack_copy0 (&flags->global_typedefs->storage, applied, strlen (applied)); xfree (applied); } return new_tf->name; } /* Look up the type T in the typedef hash table in with FLAGS. If T is in the table, return its short (class-relative) typedef name. Otherwise return NULL. If the table is NULL, this always returns NULL. */ const char * find_typedef_in_hash (const struct type_print_options *flags, struct type *t) { if (flags->local_typedefs != NULL) { struct decl_field tf, *found; tf.name = NULL; tf.type = t; found = (struct decl_field *) htab_find (flags->local_typedefs->table, &tf); if (found != NULL) return found->name; } return find_global_typedef (flags, t); } /* Print a description of a type in the format of a typedef for the current language. NEW is the new name for a type TYPE. */ void typedef_print (struct type *type, struct symbol *newobj, struct ui_file *stream) { LA_PRINT_TYPEDEF (type, newobj, stream); } /* The default way to print a typedef. */ void default_print_typedef (struct type *type, struct symbol *new_symbol, struct ui_file *stream) { error (_("Language not supported.")); } /* Print a description of a type TYPE in the form of a declaration of a variable named VARSTRING. (VARSTRING is demangled if necessary.) Output goes to STREAM (via stdio). If SHOW is positive, we show the contents of the outermost level of structure even if there is a type name that could be used instead. If SHOW is negative, we never show the details of elements' types. */ void type_print (struct type *type, const char *varstring, struct ui_file *stream, int show) { LA_PRINT_TYPE (type, varstring, stream, show, 0, &default_ptype_flags); } /* Print TYPE to a string, returning it. The caller is responsible for freeing the string. */ std::string type_to_string (struct type *type) { TRY { string_file stb; type_print (type, "", &stb, -1); return std::move (stb.string ()); } CATCH (except, RETURN_MASK_ALL) { } END_CATCH return {}; } /* See typeprint.h. */ void type_print_unknown_return_type (struct ui_file *stream) { fprintf_filtered (stream, _("")); } /* See typeprint.h. */ void error_unknown_type (const char *sym_print_name) { error (_("'%s' has unknown type; cast it to its declared type"), sym_print_name); } /* Print type of EXP, or last thing in value history if EXP == NULL. show is passed to type_print. */ static void whatis_exp (const char *exp, int show) { struct value *val; struct cleanup *old_chain; struct type *real_type = NULL; struct type *type; int full = 0; LONGEST top = -1; int using_enc = 0; struct value_print_options opts; struct type_print_options flags = default_ptype_flags; old_chain = make_cleanup (null_cleanup, NULL); if (exp) { if (*exp == '/') { int seen_one = 0; for (++exp; *exp && !isspace (*exp); ++exp) { switch (*exp) { case 'r': flags.raw = 1; break; case 'm': flags.print_methods = 0; break; case 'M': flags.print_methods = 1; break; case 't': flags.print_typedefs = 0; break; case 'T': flags.print_typedefs = 1; break; case 'o': { /* Filter out languages which don't implement the feature. */ if (show > 0 && (current_language->la_language == language_c || current_language->la_language == language_cplus)) { flags.print_offsets = 1; flags.print_typedefs = 0; flags.print_methods = 0; } break; } default: error (_("unrecognized flag '%c'"), *exp); } seen_one = 1; } if (!*exp && !seen_one) error (_("flag expected")); if (!isspace (*exp)) error (_("expected space after format")); exp = skip_spaces (exp); } expression_up expr = parse_expression (exp); /* The behavior of "whatis" depends on whether the user expression names a type directly, or a language expression (including variable names). If the former, then "whatis" strips one level of typedefs, only. If an expression, "whatis" prints the type of the expression without stripping any typedef level. "ptype" always strips all levels of typedefs. */ if (show == -1 && expr->elts[0].opcode == OP_TYPE) { /* The user expression names a type directly. */ type = expr->elts[1].type; /* If this is a typedef, then find its immediate target. Use check_typedef to resolve stubs, but ignore its result because we do not want to dig past all typedefs. */ check_typedef (type); if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) type = TYPE_TARGET_TYPE (type); /* If the expression is actually a type, then there's no value to fetch the dynamic type from. */ val = NULL; } else { /* The user expression names a type indirectly by naming an object or expression of that type. Find that indirectly-named type. */ val = evaluate_type (expr.get ()); type = value_type (val); } } else { val = access_value_history (0); type = value_type (val); } get_user_print_options (&opts); if (val != NULL && opts.objectprint) { if (((TYPE_CODE (type) == TYPE_CODE_PTR) || TYPE_IS_REFERENCE (type)) && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT)) real_type = value_rtti_indirect_type (val, &full, &top, &using_enc); else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) real_type = value_rtti_type (val, &full, &top, &using_enc); } if (flags.print_offsets && (TYPE_CODE (type) == TYPE_CODE_STRUCT || TYPE_CODE (type) == TYPE_CODE_UNION)) fprintf_filtered (gdb_stdout, "/* offset | size */ "); printf_filtered ("type = "); if (!flags.raw) create_global_typedef_table (&flags); if (real_type) { printf_filtered ("/* real type = "); type_print (real_type, "", gdb_stdout, -1); if (! full) printf_filtered (" (incomplete object)"); printf_filtered (" */\n"); } LA_PRINT_TYPE (type, "", gdb_stdout, show, 0, &flags); printf_filtered ("\n"); do_cleanups (old_chain); } static void whatis_command (const char *exp, int from_tty) { /* Most of the time users do not want to see all the fields in a structure. If they do they can use the "ptype" command. Hence the "-1" below. */ whatis_exp (exp, -1); } /* TYPENAME is either the name of a type, or an expression. */ static void ptype_command (const char *type_name, int from_tty) { whatis_exp (type_name, 1); } /* Print integral scalar data VAL, of type TYPE, onto stdio stream STREAM. Used to print data from type structures in a specified type. For example, array bounds may be characters or booleans in some languages, and this allows the ranges to be printed in their "natural" form rather than as decimal integer values. FIXME: This is here simply because only the type printing routines currently use it, and it wasn't clear if it really belonged somewhere else (like printcmd.c). There are a lot of other gdb routines that do something similar, but they are generally concerned with printing values that come from the inferior in target byte order and target size. */ void print_type_scalar (struct type *type, LONGEST val, struct ui_file *stream) { unsigned int i; unsigned len; type = check_typedef (type); switch (TYPE_CODE (type)) { case TYPE_CODE_ENUM: len = TYPE_NFIELDS (type); for (i = 0; i < len; i++) { if (TYPE_FIELD_ENUMVAL (type, i) == val) { break; } } if (i < len) { fputs_filtered (TYPE_FIELD_NAME (type, i), stream); } else { print_longest (stream, 'd', 0, val); } break; case TYPE_CODE_INT: print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0, val); break; case TYPE_CODE_CHAR: LA_PRINT_CHAR ((unsigned char) val, type, stream); break; case TYPE_CODE_BOOL: fprintf_filtered (stream, val ? "TRUE" : "FALSE"); break; case TYPE_CODE_RANGE: print_type_scalar (TYPE_TARGET_TYPE (type), val, stream); return; case TYPE_CODE_UNDEF: case TYPE_CODE_PTR: case TYPE_CODE_ARRAY: case TYPE_CODE_STRUCT: case TYPE_CODE_UNION: case TYPE_CODE_FUNC: case TYPE_CODE_FLT: case TYPE_CODE_VOID: case TYPE_CODE_SET: case TYPE_CODE_STRING: case TYPE_CODE_ERROR: case TYPE_CODE_MEMBERPTR: case TYPE_CODE_METHODPTR: case TYPE_CODE_METHOD: case TYPE_CODE_REF: case TYPE_CODE_RVALUE_REF: case TYPE_CODE_NAMESPACE: error (_("internal error: unhandled type in print_type_scalar")); break; default: error (_("Invalid type code in symbol table.")); } gdb_flush (stream); } /* Dump details of a type specified either directly or indirectly. Uses the same sort of type lookup mechanism as ptype_command() and whatis_command(). */ void maintenance_print_type (const char *type_name, int from_tty) { struct value *val; struct type *type; if (type_name != NULL) { expression_up expr = parse_expression (type_name); if (expr->elts[0].opcode == OP_TYPE) { /* The user expression names a type directly, just use that type. */ type = expr->elts[1].type; } else { /* The user expression may name a type indirectly by naming an object of that type. Find that indirectly named type. */ val = evaluate_type (expr.get ()); type = value_type (val); } if (type != NULL) { recursive_dump_type (type, 0); } } } struct cmd_list_element *setprinttypelist; struct cmd_list_element *showprinttypelist; static void set_print_type (const char *arg, int from_tty) { printf_unfiltered ( "\"set print type\" must be followed by the name of a subcommand.\n"); help_list (setprintlist, "set print type ", all_commands, gdb_stdout); } static void show_print_type (const char *args, int from_tty) { cmd_show_list (showprinttypelist, from_tty, ""); } static int print_methods = 1; static void set_print_type_methods (const char *args, int from_tty, struct cmd_list_element *c) { default_ptype_flags.print_methods = print_methods; } static void show_print_type_methods (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("Printing of methods defined in a class in %s\n"), value); } static int print_typedefs = 1; static void set_print_type_typedefs (const char *args, int from_tty, struct cmd_list_element *c) { default_ptype_flags.print_typedefs = print_typedefs; } static void show_print_type_typedefs (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("Printing of typedefs defined in a class in %s\n"), value); } /* Limit on the number of nested type definitions to print or -1 to print all nested type definitions in a class. By default, we do not print nested definitions. */ static int print_nested_type_limit = 0; /* Set how many nested type definitions should be printed by the type printer. */ static void set_print_type_nested_types (const char *args, int from_tty, struct cmd_list_element *c) { default_ptype_flags.print_nested_type_limit = print_nested_type_limit; } /* Show how many nested type definitions the type printer will print. */ static void show_print_type_nested_types (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { if (*value == '0') { fprintf_filtered (file, _("Will not print nested types defined in a class\n")); } else { fprintf_filtered (file, _("Will print %s nested types defined in a class\n"), value); } } void _initialize_typeprint (void) { struct cmd_list_element *c; c = add_com ("ptype", class_vars, ptype_command, _("\ Print definition of type TYPE.\n\ Usage: ptype[/FLAGS] TYPE | EXPRESSION\n\ Argument may be any type (for example a type name defined by typedef,\n\ or \"struct STRUCT-TAG\" or \"class CLASS-NAME\" or \"union UNION-TAG\"\n\ or \"enum ENUM-TAG\") or an expression.\n\ The selected stack frame's lexical context is used to look up the name.\n\ Contrary to \"whatis\", \"ptype\" always unrolls any typedefs.\n\ \n\ Available FLAGS are:\n\ /r print in \"raw\" form; do not substitute typedefs\n\ /m do not print methods defined in a class\n\ /M print methods defined in a class\n\ /t do not print typedefs defined in a class\n\ /T print typedefs defined in a class\n\ /o print offsets and sizes of fields in a struct (like pahole)\n")); set_cmd_completer (c, expression_completer); c = add_com ("whatis", class_vars, whatis_command, _("Print data type of expression EXP.\n\ Only one level of typedefs is unrolled. See also \"ptype\".")); set_cmd_completer (c, expression_completer); add_prefix_cmd ("type", no_class, show_print_type, _("Generic command for showing type-printing settings."), &showprinttypelist, "show print type ", 0, &showprintlist); add_prefix_cmd ("type", no_class, set_print_type, _("Generic command for setting how types print."), &setprinttypelist, "show print type ", 0, &setprintlist); add_setshow_boolean_cmd ("methods", no_class, &print_methods, _("\ Set printing of methods defined in classes."), _("\ Show printing of methods defined in classes."), NULL, set_print_type_methods, show_print_type_methods, &setprinttypelist, &showprinttypelist); add_setshow_boolean_cmd ("typedefs", no_class, &print_typedefs, _("\ Set printing of typedefs defined in classes."), _("\ Show printing of typedefs defined in classes."), NULL, set_print_type_typedefs, show_print_type_typedefs, &setprinttypelist, &showprinttypelist); add_setshow_zuinteger_unlimited_cmd ("nested-type-limit", no_class, &print_nested_type_limit, _("\ Set the number of recursive nested type definitions to print \ (\"unlimited\" or -1 to show all)."), _("\ Show the number of recursive nested type definitions to print."), NULL, set_print_type_nested_types, show_print_type_nested_types, &setprinttypelist, &showprinttypelist); } /* Print status to stream STREAM. */ void val_print_not_allocated (struct ui_file *stream) { fprintf_filtered (stream, _("")); } /* Print status to stream STREAM. */ void val_print_not_associated (struct ui_file *stream) { fprintf_filtered (stream, _("")); }